Syntheses of s-Triazolo [4,3-a] Pyrimidine Derivatives

Takayuki OKABE, Eiji TANIGUCHI and Kazuyuki MAEKAWA

Faculty of Agriculture, Kyushu University Received August 7, 1972

7-Substituted-s-triazolo[1,5-*a*]pyrimidines were synthesized by the condensation of 3-amino-1,2,4-triazole (ATA) with ethyl acetoacetate and their biological activities were described.¹⁾ The present paper deals with the condensation of 5-substituted-ATA-derivatives, for example, 3-amino-5-hydroxy-1,2,4-triazole (I) and 3-amino-5-mercapto-1,2,4-triazole (II), with ethyl acetoacetate, acetylacetone and ethyl cyanoacetate.

By the condensation of ATA with β -chlorocrotonic acid ester, Birr *et al.*²⁾ prepared 7-hydroxy-derivatives containing the ring system of (IV). There is, however, no report as to 3-hydroxy-derivatives. On the other hand, the compound (VII) prepared from (II) and acetylacetone by the authors was identical with that synthetized by Bower *et al.*³⁾ and Williams⁷⁾ with 2pyrimidylhydrazine and excess carbon disulfide.

The compounds obtained are shown in Fig. 1 and Table I. These compounds contained a ring system related to purines, to 2-(α -hydroxybenzyl)-benzimida-zole which has antiviral activity,⁴¹ to imidazolo-pyridine

which is herbicidal,⁵¹ and are expected to exhibit some biological activities. Some of them showed herbicidal or fungicidal activity, on which have been reported elsewhere.¹¹

EXPERIMENTAL

5, 7-Dimethyl-3-mercapto-s-triazolo [4,3-a] pyrimidine, (VII). The starting compounds, (I) and (II), were prepared according to the method of Godfrey *et al.*⁶⁾

A mixture of 1.9 g of II⁶¹ and 2.5 g of acetylacetone in 15 ml of acetic acid was refluxed for about 5 hr. During the reaction the solution turned yellow-brown. After completion of the reaction, the acetic acid was removed *in vacuo* on a steam bath. The resulting precipitate was collected, washed with ether, and recrystallized from ethanol to obtain 2.6 g of pale yellow needles, mp $243 \sim 244^{\circ}$ C.

Williams prepared this compound by the condensation of 2-hydrazino-4,6-dimethylpyrimidine with carbon disulfide in pyridine.⁷⁾ Mp and analytical data are identical with our preparation.

4-Amino-7-hydroxy-3-mercapto-s-triazolo [4,3-a] pyrimidine, (V). 1.5 g of ethyl cyanoacetate and 1.2 g of II were added to a solution of sodium ethoxide which was prepared from 0.25 g of Na and 15 ml of abs. ethanol. The mixture was refluxed for 9 hr. During the reaction the mixture turned dark yellow.

FIG. 1. Synthesis of Triazolo[4,3-a]pyrimidine Derivatives.

		TABLE	I. SYNTHESI	es of Tri	AZOLO[4	.,3-a]pyrimidine Di	ERIVAT	IVES			
Reaction partner		Reactio	ц		<u> </u>	=					
	Temp. (°C)	Time (hr)	Solvent	$\mathbf{R_1} \mathbf{R_2}$	zz	=Z \~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Yield (%)	Mp (°C)	Molecular formula	Formula	Refr.
$CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}NH_{1}NH_{1}N$	110	Ś	AcOH	CH3	CH ₃	Ю	65	256~7	$C_7 H_8 ON_4$	IV	
HN SH N N N	100	ŝ	AcOH	CH ₃	CH ₃	HS	72	243~4	C ₇ H ₈ N ₄ S	ΙΙΛ	3, 7, 8
CH ₃ , HNS-CH ₂	110	9	AcOH	HO	CH ₃	SCH ₂ C ₆ H ₅	78	247	C ₁₃ H ₁₂ ON ₄ S	VI a	
						SCH ₂ C ₆ H ₅ Cl	60	242	C ₁₃ H ₁₁ ON4SCI	VI b	
EtO HaN N						SCH ₂ C ₆ H ₅ NO ₂	69	263	$C_{13}H_{11}O_3N_5S$	VI c	
Eto = to = 0	70	6	EtOH contain- ing EtONa	NH_2	НО	HS	09	300 >	CsHsONsS	>	
CH ₃ CH ₃ CH ₃ N N CH ₃ N CH ₃ N CH ₃ N CH ₂ N CH ₂ CH ₂ -COOH CH ₂ -CH ₂ -COOH CH ₂ -CH ₂ -COOH CH ₂ -CH ₂ -COOH CH ₂ -CH ₂ -COOH	$\begin{array}{c} 25\\ 70 \sim 80\\ 90 \sim 95\\ 100\\ 25\\ 60 \sim 80\end{array}$	2.5 2.5 2.5 2.5 2.5	1 N NaOH , NaOH H2O 1 N NaOH	ËËËËËË	ËËËËËË	SCH3 SCH2CaH5 SCH2CaH5 SCH2COOH SCH22COOH SCH2-CH2OH SCH2CaH4OH	96888689 916888689	152~3 133.5~4.5 179.5 212 113 113 143~5	CaH10N.S C14H14N.S C14H14N.S C3H1002N.A.S C16H12020.A.S C3H1200A.S.H20 C14H14N.SCI C14H14N.SCI	VIII a b d f	3

442

T. OKABE, E. TANIGUCHI and K. MAEKAWA

After cooling, the precipitated sodium salts were collected, dissolved in water and treated with charcoal. The filtrate was acidified with conc.HCl, and the resulting precipitate was recrystallized from ethanol to obtain colorless needles, mp above 300°C (decomp.). Yield, 0.7 g.

 $C_5H_5ON_5S$: Calcd. C, 32.79% H, 2.75% N, 38.25% Found C, 32.98 H, 2.78 N, 38.02

3-Benzylthio-5-hydroxy-7-methyl-s-triazolo[4,3-a]pyrimidine, (VI a). A mixture of 1 g of 3-amino-5benzylthio-1,2,4-triazole (III), which was prepared from II and benzyl chloride, and 1 g of ethyl acetoacetate in 12 ml of acetic acid was refluxed on an oil bath for 6 hr. During the reaction colorless crystals appeared. The acetic acid was removed *in* vacuo and the residue recrystallized from ethanol and water to afford 1.2 g of colorless prisms, mp 247°C.

 $\begin{array}{c} C_{13}H_{12}ON_4S\colon \mbox{ Calcd. } C, \ 57.35\,\% \ H, \ 4.44\,\% \ N, \ 20.58\,\% \\ Found \ C, \ 57.33 \ H, \ 4.55 \ N, \ 20.31 \end{array}$

3-(*p*-Chloro)benzylthio-5-hydroxy-7-methyl-s-triazolo-[4,3-a]pyrimidine, (VI b). A suspension of 3-amino-5-(*p*-chloro)benzylthio-1,2,4-triazole (4.5 g) in acetic acid(30 ml) containing ethyl acetoacetate (2.6 g) was heated under reflux for 6 hr. After chilling, the product was collected and recrystallized from aq. ethanol as colorless needles, mp 242°C. Yield, 4.8 g. C₁₃H₁₁ON₄SCl :

Calcd. C, 50.91 % H, 3.61 % N, 18.27 % Found C, 50.88 H, 3.73 N, 18.18

 $3 \cdot (p-Nitro)benzylthio-5-hydroxy-7-methyl-s-triazolo$ [4,3-a]pyrimidine, (VI c). According to the same procedure just mentioned, pale yellow needles of the VI c was obtained from 3-amino-5-(p-nitro)benzylthio-1,2,4triazole (1.7 g) and ethyl acetoacetae (0.9 g). Mp 263°C, yield 2 g.

5, 7-Dimethyl-3-hydroxy-s-triazolo[4,3-a]pyrimidine, (IV). A mixture of 0.3 g of I and 0.45 g of acetylacetone in 3 ml of acetic acid was refluxed for about 5 hr on an oil bath. During the reaction the solution turned yellow, and yellow crystals appeared. The acetic acid was removed *in vacuo*. The resulting residue was recrystallized from methanol to afford 0.4 g

of yellow needles, mp 257°C. C₇H₈ON₄ : Calcd. C, 51.21% H, 4.91% N, 34.13% Found C, 51.24 H, 4.98 N, 34.16

S-Alkylation of 5,7-dimethyl-3-mercapto-s-triazolo[4,3a]pyrimidine, (VIII $a \sim f$). These compounds (VIII $a \sim f$) were obtained with a fairly good yield, by treating VII with alkyl halides under the conditions given in the Table I. The recrystallization was carried out from aq.methanol (VIII e), aq.ethanol (VIII d), ethanol (VIII b, f), benzene-ethanol (VIII c) and benzene (VIII a) respectively. In all cases the derivatives were colorless needles.

(VII	I	a)	

()				
$C_8H_{10}N_4S$	Calcd.	C 49.48%	Н, 5.19%	N, 28.85%
	Found	C 49.78	H, 5.45	N, 28.85
(VIII b)				
$C_{14}H_{14}N_4S$	Calcd.	C 62.21	Н, 5.22	N, 20.73
	Found	C 62.50	H, 5.38	N, 20.68
(VIII c)				
$C_9H_{10}O_2N_4S$	Calcd.	C 45.38	H, 4.23	N, 23.52
	Found	C 45.37	H, 4.31	N, 23.70
(VIII d)				
$C_{10}H_{12}O_2N_4S$	Calcd.	C 47.62	H, 4.80	N, 22.22
	Found	C 47.51	H, 4.88	N, 22.17
(VIII e)				
$C_9H_{12}ON_4S.$	Calcd.	C 44.62	H, 5.83	N, 23.1 3
H_2O	Found	C 44.18	H, 6.02	N, 22.82
(VIII f)				
$C_{14}H_{14}N_4SCl$	Calcd.	C 55.11	H, 4.58	N, 18.41
	Found	C 55.43	H, 4.42	N, 18.39

REFERENCES

- 1) T. Okabe, E. Taniguchi and K. Maekawa, Sci. Bull., Fac. Agric. Kyushu Univ., 26, 105 (1972).
- 2) E.-J. Birr and W. Walther, Ber., 86, 1401 (1953).
- 3) J. D. Bower and F. P. Doyle, J. Chem. Soc., 1957, 727.
- I. Tamm, H. J. Eggers, R. Bablanian, A. F. Wagner and K. Folers, *Nature*, 223, 785 (1969).
- 5) H. Röchling and K. H. Buchel, *Chem. Ber.*, **104**, 344 (1971).
- L. E. A. Godfrey and F. Kurzer, J. Amer. Chem. Soc., 82, 3437 (1960).
- 7) L. A. Williams, J. Chem. Soc., 1960, 1829.
- 8) K. Shirakawa, J. Pharm. Soc. Jap., 80, 1542 (1960).