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Abstract—A microwave-assisted solid-supported Dötz benzannulation of chromium carbene complexes with various alkynes has
been developed. The oxidative cleavage of the resulting resin-bound 1,4-naphthols affords 2,3-disubstituted-1,4-naphthoquinone
derivatives in good to moderate yields with high purities.
� 2005 Elsevier Ltd. All rights reserved.
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Transition metal-mediated reactions are extremely
appealing for solid-phase organic synthesis (SPOS) due
to their versatility, wide-ranging functional group com-
patibility and potential for synthesizing biologically ac-
tive lead compounds. Although a wide range of Pd-
mediated coupling reactions and transition metal-cata-
lyzed olefin metathesis reactions have been utilized in
SPOS,1 the development of transition metal carbene
chemistry remains relatively unexplored. Notable
among transition metal carbene chemistry is the Dötz
benzannulation of Fischer carbene complexes with
alkynes to form substituted phenols.2–4 While the Dötz
benzannulation has been extensively applied to synthe-
size a diverse array of natural products,3 no examples
of its application to combinatorial library synthesis have
yet been reported.

Due to the mechanistic complexity of the reaction, the
product distribution of the Dötz benzannulation can
vary among naphthol, indene, furan, and cyclobutanone
products by slightly modifying reaction conditions such
as the solvent, Fischer carbene, and alkyne concentra-
tions and the nature of the alkyne.5 Although there is
precedent for the preparation of solid-supported triphe-
nyl phosphine6 Fischer carbene complexes and the
application of a soluble Fischer carbene complex7 to
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Naphthoquinones; Fischer carbenes.
* Corresponding author. Tel.: +1 915 747 5944; fax: +1 915 747
5748; e-mail: luisem@utep.edu
solid-phase peptide synthesis, their application to SPOS
remains unexplored. Herein, we report the first example
of the solid-supported Dötz benzannulation reaction
and subsequent oxidative cleavage leading to biologi-
cally active 2,3-disubstituted-1,4-naphthoquinone deriv-
atives in good to moderate yields.

Modifying the method originally developed by Connor
and co-workers,8 the synthesis of polymer-supported
Fischer carbene complex 2 was obtained in four steps
(Scheme 1) from commercially available chromium
hexacarbonyl and phenyllithium by O-acylation of
[tetramethylammonium][(2-phenyl)oxidocarbene]penta-
carbonylchromium 1 with acetyl chloride followed by
O=

2

Scheme 1.
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reaction with PL-Wang resin (Polymer Laboratories, 1%
crosslinked 1.7 mmol/g) to produce resin-bound Fischer
carbene complex 2 in 95% loading as determined by ele-
mental analysis.9 Resin loading of the carbene complex
can be easily monitored qualitatively by colorimetric
analysis, the beads turn to a dark red color. The appear-
ance of characteristic Cr–CO stretches at 2061 and
1944 cm�1 in the IR spectrum of 2 corresponds to CO
stretches found in analogous aryl carbene complexes.10

The reaction of 2 with 1-octyne (3e), followed by the
oxidative cleavage of the resulting resin-bound phenol
4e using cerium(IV) ammonium nitrate (CAN), provides
a useful model system for reaction optimization of the
solid-supported Dötz benzannulation reaction (Table
1). In contrast to traditional thermal and a recently re-
ported microwave-assisted11 Dötz benzannulation with
soluble Fischer carbene complexes, CH2Cl2 was the
optimal solvent affording 5e in 63% yield (entry 1).
While other solvents, such as acetonitrile, THF, toluene,
and heptane, were also effective for the exclusive forma-
tion of 5e under microwave conditions (entries 2–5), the
use of butyl ether or DMF was less effective (entries 6
and 7). A brief examination of the effect of temperature
on the reaction revealed that 85 �C was found to be the
optimum temperature (entry 1 and entries 8–10) and
extending the reaction time had little influence on the
yield of 5e (entry 1 and entries 11–13). The same reac-
tion can be carried out under traditional thermal condi-
tions with comparable yields (5e, 58% yield: entry 14);
however, there is substantial 6-fold shortening of reac-
tion times for the microwave conditions over traditional
thermal conditions.

Under optimized conditions, the Dötz benzannulation
of 2 was performed with various alkynes 3a–l followed
by the oxidative cleavage of the resulting resin-bound
Table 1. Effects of solvent, temperature, and time on the solid-
supported Dötz benzannulation reaction of 2 with 1-octyne (3e),
followed by the oxidative cleavage of resin-bound intermediate 4ea

Entry Solvent Temp (�C) Time (min) Yield of 5e (%)b

1 CH2Cl2 85 20 63
2 CH3CN 85 20 61
3 THF 85 20 58
4 Toluene 85 20 56
5 Heptane 85 20 55
6 Butylether 85 20 40
7 DMF 85 20 35
8 CH2Cl2 135 20 50
9 CH2Cl2 110 20 35
10 CH2Cl2 60 20 50
11 CH2Cl2 85 50 61
12 CH2Cl2 85 30 61
13 CH2Cl2 85 10 57
14c CH2Cl2 85 120 58

a Reactions of 2 (0.115 mmol) with 1-octyne (0.575 mmol) were carried
out in the microwave at the specified temp for the specified time in
2.00 mL of the specified solvent followed by the oxidative cleavage of
the resin using CAN (0.575 mmol).

b Isolated overall yields were calculated based on the loading of PL-
Wang (1.7 mmol/g) by the supplier. Purity is >95% as determined by
1H NMR spectroscopy.

cNo microwave irradiation was employed.
naphthols 4a–l (Scheme 2).12 Table 2 illustrates that var-
ious aryl and alkyl substituted alkynes produce 1,4-
naphthoquinones 5a–i in moderate to good yields (en-
tries 1–9) with aryl substituted acetylenes producing
2,3-disubstituted-1,4-naphthoquinones in slightly higher
yields than alkyl substituted acetylenes. In contrast to
the solution-phase benzannulations, the solid-supported
Dötz benzannulation reaction cleanly produces the qui-
none product without the indene, indenone, or cyclobu-
tenone side products typically seen in these reactions as
evidenced by GC, 1H NMR, and mass data. An oxidized
product of unreacted resin-bound Fischer carbene com-
plex 2, benzoic acid, was the only side product.13

The present solid-supported Dötz reaction tolerates
alcohol and ester functionality on the alkyne (entries
10 and 11) and produces the corresponding 1,4-naph-
thoquinones in moderate yield. It is noteworthy that 5j
serves as a key intermediate for the synthesis of pyrano-
naphthoquinone, which has significant antitumor activ-
ity.14 To further explore the synthetic scope of the
reaction, the reaction was extended to conjugated
diynes. In contrast to the solution-phase Dötz benzann-
ulation with conjugated diynes,15 the reaction of 1,4-
diphenyl butadiyne (3l) with 2 under our standard
conditions cleanly afforded the mono benzannulation
product 2-phenyl-3-phenylethynyl-[1,4]naphthoquinone
CAN, CH2Cl2/H2O
rt, 12 h

O

R

R2

5a-l

Scheme 2.

Table 2. Results of the microwave-assisted solid-phase Dötz benzan-
nulation of 2 with various alkynes 3a–l, followed by the oxidative
cleavage using CAN

Entry Alkyne Product R1 R2 Yield (%)a

1 3a 5a Ph Ph 76 (99)
2 3b 5b H Ph 67 (98)
3 3c 5c Me Ph 62 (99)
4 3d 5d H C5H11 58 (97)
5 3e 5e H C6H13 63 (97)
6 3f 5f H C7H15 62 (97)
7 3g 5g C3H7 C3H7 55 (96)
8 3h 5h Me C6H7 50 (96)
9 3i 5i C2H5 C3H7 57 (99)
10 3j 5j H C3H6OH 50 (93)
11 3k 5k C2H5 CO2Et 42 (98)
12 3l 5l Ph C„CPh 68 (95)

a Isolated overall yields were calculated based on the loading of PL-
Wang (1.7 mmol/g) by the supplier. Values given in parentheses
represent purity of products as determined by GC.
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(5l) in 68% yield (entry 12) without any intermolecular
double benzannulation or cyclobutenone product
formed.

To understand the regioselectivity of the solid-supported
Dötz benzannulation, the reaction with o-methoxyphe-
nyl Fischer carbene complex 8, synthesized as described
in Scheme 3, was investigated. Under our standard con-
ditions (Scheme 4), the reactions of 8 with unsymmetri-
cal acetylenes 1-pentyne (3k) and phenylacetylene (3b)
were highly regioselective and the regiochemistry was
same as that of the solution-phase chemistry, affording
the corresponding 2-substituted 1,4-naphthoquinone as
the sole product by GC (9a: 70% yield—98% purity,
9b: 80% yield—97% purity).5b

Several interesting features are noteworthy from this
study. First, the present solid-supported Dötz reaction
is highly insensitive to the nature of the solvents (Table
1, entries 1–7). Irrespective of the solvent under our
standard conditions, the reaction afforded the single
1,4-naphthoquinone product and no other product
was seen in the 1H NMR spectrum. This is in sharp con-
trast to the solution-phase chemistry in which the Dötz
reaction is highly solvent dependent. For example, the
solution-phase reaction of phenyl Fischer carbene
complex with diphenyl acetylene using heptane as the
solvent at 80 �C for 30 min followed by the CAN
oxidation afforded four different products,5b whereas
the present solid-phase reaction of 2 with diphenyl acet-
ylene using heptane as the solvent under microwave as
well as thermal conditions afforded single product 5a
with 98% purity in 60% and 63% yields, respectively.
Second, the only side product, benzoic acid, can be eas-
ily removed from the reaction mixture by washing with
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dilute base or by passage through a basic solid-phase
extraction (SPE) column. Third, in contrast to the solu-
tion-phase Dötz benzannulation, the purification proce-
dure for the present solid-supported methodology is
quite simple and requires no column chromatography.
The 1,4-naphthoquinone derivatives display a broad
spectrum of biological activities16 and preliminary
screening of these compounds in our laboratories has
showed significant cyctotoxic17 and antimycobacterial
activities.18

In summary, we have developed a new resin-bound
Fischer carbene of chromium complexes. The solid-sup-
ported Dötz benzannulation reaction followed by CAN
cleavage allows an efficient synthesis of various 1,4-
naphthoquinone derivatives in good to moderate yields.
Further work in our laboratories is to utilize this meth-
odology for the preparation of libraries of structurally
diverse compounds, including natural products, and
the screening of these compounds against a variety of
biological targets is currently underway.
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