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Synthesis and characterization of acetylated sept-D-glucopyranose
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A B S T R A C T

An oligosaccharide donor, acetylated sept-D-glucopyranose tetradecyl carbamate, was designed and

synthesized. This compound could be easily linked to hydroxyl-containing compounds through an O-

glycosidic bond. Characterization of all the oligosaccharide intermediates and the final product was

thoroughly discussed.

� 2013 Dong-Liang Liu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights

reserved.
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1. Introduction

Glycosyl carbamates were reported as glycosyl donors whose
carbamate moiety could be displaced by the hydroxyl group in
hydroxyl-containing acceptors and form an O-glycosidic bond,
which constituted a kind of glycosylation reaction [1,2]. Compared
to glycose, oligosaccharides showed more interesting properties.
For example, they could be used to form glycocluster and
glycodendrimer, which might lead to cluster effect [3,4]. Besides,
polyanionic polysaccharides constitute a large family of anti-HIV
chemotherapeutic agents [5]. These polyanionic polysaccharides,
such as heparin sulfate (HS) and dextran sulfate (DS), though have
strong affinity to the basic regions of gp120, unfortunately are also
anticoagulants. They can hardly achieve therapeutic anti-HIV drug
levels without affecting blood clotting [5,6]. And, DS was poorly
absorbed when dosed orally, and when given intravenously, it
resulted in toxicity before it could produce a therapeutic effect
based on HIV biomarker levels [5,7,8]. The fact that sulfated
oligosaccharides with attached alkyl chains yielded good anti-HIV
activity and low toxicities encouraged studies using analogous
alkylated oligosaccharides [5,9]. Rather than using the Koenigs–
Knorr stepwise oligosaccharide synthesis method [10], in this
article, we tried to introduce a cheap, short-routed, and
straightforward process to produce oligosaccharide donors.
Compound 1 is comprised of an acetylated sept-D-glucopyranose
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and a tetradecyl alkyl chain, as well as the carbamate moiety
between them, which could be easily linked to hydroxyl-contain-
ing supporters through an O-glycosidic bond (Fig. 1) [1]. Hexa- and
octa-D-glucopyranose donors could be obtained similarly using a-
and g-cyclodextrin.

2. Experimental

b-Cyclodextrin 2 was acetylated with acetic anhydride in
pyridine and cleaved with concentrated perchloric acid to give per-
acetylated maltoheptaose 4, whose anomeric hydroxyl group was
then selectively deprotected using ethylenediamine (EDA) and
acetic acid to give the anomeric hydroxyl containing acetylated
oligosaccharide 5 (Scheme 1) [9,11–16]. Compound 5 was then
connected to tetradecylamine by phosgene to give the oligosac-
charide donor acetylated sept-D-glucopyranose tetradecyl carba-
mate 1 [17,18]. Experimental details description as well as the MS
and NMR spectra of compounds 3, 4, 5, 1 are listed in Supporting
information, and spectral data of the products are as follows.

Heptakis (2,3,6-tri-O-acetyl)-b-cyclodextrin (3): yield 83%; white
solid; 1H NMR (400 MHz, DMSO-d6): d 5. 21 (t, 7H, J = 8 Hz, C3-H),
5.06 (s 7H, C1-H), 4.74–4.71 (m, 7H, C5-H), 4.42–4.39, 4.26–4.22
(m, 14H, C6-H, C6-H0), 4.10 (s, 7H, C2-H), 3.85 (t, 7H, J = 8 Hz, C4-H),
2.09–1.95 (m, 63H, –CH3); 13C NMR (100 MHz, DMSO-d6): d
170.03, 169.31 (–CO–), 96.57 (C1), 76.54 (C4), 69.98 (C3, C5), 69.38
(C2), 62.34 (C6), 20.43 (–CH3); MALDI-FTMS (m/z): calcd. for
[M+Na]+: 2039.6, found: 2039.6, calcd. for [M+K]+: 2055.6, found:
2055.5.
behalf of Chinese Chemical Society. All rights reserved.
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Fig. 1. Chemical structure of sept-D-glucopyranose tetradecyl carbamate 1.
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2,3,4,6-Tetra-O-acetyl-a-D-glucopyranosyl-[(1 ! 4)-2,3,6-tri-O-

acetyl-a-D-glucopyranosyl]5-(1 ! 4)-1,2,3, 6-tetra-O-acetyl-a, b-D-

glucopyranosyl (4): Yield 12%; white solid; 1H NMR (500 MHz,
DMSO-d6): d 6.10 (s, 1H, C11-H), 5.40–5.36, 5.30–5.18 (m, 7H, C3-
H), 5.28–5.15 (m, 6H, C12-7-H), 5.02–4.70 (m, 7H, C5-H), 4.15–4.10,
4.03–3.93 (m, 7H, C2-H), 4.37–4.10, 4.03–3.96 (m, 14H, C6-H, C6-
H0), 4.10–4.05, 4.00–3.90 (m, 7H, C4-H), 2.19–1.95 (m, 69H, –CH3);
13C NMR (125 MHz, DMSO-d6): d 170.02–169.06 (–CO–), 95.84,
95.53 (C12�7), 88.12 (C11), 74.00, 73.66 (C4), 71.15, 70.90, 68.86
(C3), 69.86, 68.86, 68.76 (C2), 69.40, 69.17, 67.72 (C5), 62.75, 62.39,
61.33 (C6), 20.98–20.21 (–CH3); MALDI-FTMS (m/z): calcd. for
[M+Na]+: 2141.6, found: 2141.6, calcd. for [M+K]+: 2157.6, found:
2157.5.

2,3,4,6-Tetra-O-acetyl-a-D-glucopyranosyl-[(1 ! 4)-2,3,6-tri-O-

acetyl-a-D-glucopyranosyl]5-(1 ! 4)-2,3,6-tri-O-acetyl-a, b-D-glu-

copyranose (5): Yield 37%; white solid; 1H NMR (400 MHz,
DMSO-d6): d 5.45–5.35, 5.30–5.15 (m, 7H, C3-H), 5.25–5.10 (m,
6H, C12�7-H), 5.13–5.08 (m, 1H, C11-H), 5.05–4.55 (m, 7H, C5-H),
4.38–4.10, 4.12, 4.00 (m, 14H, C6-H, C6-H0), 4.12–3.90 (m, 7H, C2-
H), 4.00–3.82 (m, 7H, C4-H), 2.08–1.91 (m, 66H, –CH3); 13C NMR
(100 MHz, DMSO-d6): d 170.10–169.14 (–CO–), 95.54 (C12�7),
88.00 (C11), 74.21, 74.03 (C4), 71.35, 70.87, 68.65 (C3), 71.30,
69.82, 69.41, 68.00 (C5), 68.88, 68.00 (C2), 62.77, 61.35 (C6),
20.57–20.25 (–CH3); MALDI-FTMS (m/z): calcd. for [M+Na]+:
2099.6, found: 2099.6, calcd. for [M+K]+: 2115.6, found: 2115.6.

2,3,4,6-Tetra-O-acetyl-a-D-glucopyranosyl-[(1 ! 4)-2,3,6-tri-O-

acetyl-a-D-glucopyranosyl]5-(1 ! 4)-2,3,6-tri-O-acetyl-a, b-D-glu-

copyranose tetradecyl carbamate (1): Yield 85%; white solid; 1H
NMR (400 MHz, DMSO-d6): d 5.79–5.77 (m, 1H, C11-H), 5.48–5.13
Scheme 1. Synthesis of sept-D-glucopyranose tetradecyl carbamate 1. Reagents and cond

23 8C, 2 h, 12%; (c) EDA, acetic acid, dry THF, 30 8C, 39 h, 70% and (d) tetradecyl isocya
(m, 7H, C3-H), 5.30–5.10 (m, 6H, C12�7-H), 5.04–4.90, 4.90–4.67
(m, 7H, C5-H), 4.40–4.10, 4.07–3.97 (m, 14H, C6-H, C6-H0), 4.13–
3.90 (m, 7H, C2-H), 4.15–3.87 (m, 7H, C4-H), 3.04–2.87, 1.24 (m,
26H, –CH2–), 2.10–1.94 (m, 66H, Ac-CH3), 0.87–0.84 (t, J = 7 Hz, 3H,
R-CH3); 13C NMR (100 MHz, DMSO-d6): d 170.07–169.18 (–CO–),
153.62 (–CONH–), 95.56 (C12�7), 91.00 (C11), 74.02 (C4), 70.90,
69.43 (C3), 69.89, 68.02 (C5), 69.43, 68.68 (C2), 62.80, 61.00 (C6),
40.12, 31.28–22.09 (–CH2–), 20.53–20.26 (Ac-CH3), 13.93 (R-CH3);
MALDI-FTMS (m/z): calcd. for [M+Na]+: 2338.8, found: 2338.8,
calcd. for [M+K]+: 2354.8, found: 2354.8.

3. Results and discussion

Chemical shift changes of the oligosaccharides 3, 4, 5, 1 could be
observed clearly in the HSQC NMR spectra (Fig. S1, in Supporting
information). For per-acetylated b-cyclodextrin 3, the seven
acetylated monosaccharide units have exactly identical structures
whose chemical shifts in the same glucose ring are all the same in
1H NMR and 13C NMR. Since the two protons in C6 (C6-H, C6-H0) are
not chemically equivalent, their chemical shifts are 4.42–4.39 and
4.26–4.22, respectively (Fig. S1a). When the cyclic structure of
compound 3 was transformed into an open chain oligo-glucose
structure (maltoheptaose 4), the chemical environment of the
seven acetylated monosaccharide units changed accordingly: The
original identical proton and 13C chemical shifts turned into
chemical shift clusters around the original positions. The largest
deviation of proton and 13C chemical shift were generated in C11-H
and C11, which moved from 5.06 and 96.57 to 6.10 and 88.12
respectively. These signals were far from the proton and 13C
chemical shifts of C12�7-H and C12�7, which were at 5.28–5.15 and
95.84, 95.53 ppm, respectively (Fig. S1b). The possible reason for
proton chemical shift alterations was the change of the shielding
effect of the carbonyl group on the C11 anomeric hydroxy group.
The C11-H was in the deshielding zone of the carbonyl group and
when the acetyl group on the C11 anomeric hydroxyl was
selectively removed (compound 5), the chemical shift of C11-H
was moved upfield from 6.10 to 5.13–5.08 ppm (Fig. S1c). When
the C11 anomeric hydroxyl was converted into a carbamate, the
itions: (a) Ac2O, pyridine, 50 8C, 10 h, 83%; (b) 70% aq. HClO4, Ac2O, 0 8C, 20 h, then

nate, TEA, toluene, 80 8C, 6 h, 85%.
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new carbonyl group in the carbamate exerts its deshielding effect
on C11-H, whose chemical shift moved downfield from 5.13–5.08
to 5.79–5.77 ppm. In contrast, the chemical shifts of its counterpart
C12�7-H, stayed at 5.30–5.10 ppm (Fig. S1d). 13C chemical shifts of
C11 in compounds 4, 5 and 1, were at 88.12, 88.00 and 91.00 ppm
respectively, which were not remarkably altered, but all far from
the corresponding 13C chemical shifts of their C12�7 counterparts
in compounds 4, 5, and 1. They were of course also differed from
the 13C chemical shift in compound 3.

4. Conclusion

In conclusion, oligosaccharide donor acetylated sept-D-gluco-
pyranose carbamate 1 was synthesized and thorough discussion of
the characterization data of the obtained complex molecule
supports the conclusion. The procedure introduced here might
be helpful for the oligosaccharide involved processes.
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Supplementary material related to this article can be found, in the
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