Chem. Pharm. Bull. 17(11)2364—2365(1969)

UDC 615.31.011.5;615,281.07

Synthesis of Antibacterial Agents having both Sulfanilamidoand Nitrofuryl- Groups in the Molecules. II.¹⁾

Kenji Kumaki, Sakae Wada,2) and Ikuo Moriguchi2a)

Research Laboratories, Chugai Pharmaceutical Co., Ltd.2)

(Received May 6, 1969)

It was reported in the previous paper¹) that under consideration of the electronic structure of the molecules several compounds were synthesized for chemotherapeutic uses by combining sulfanilamidopyrimidines with 5-nitrofuran, and that the new products showed high bacterio-static activities *in vitro*. But the products were poor in the solubilities to water and organic solvents, and accordingly might be poor in the gastro-intestinal absorption. Perhaps for this reason the compounds did not show so high therapeutic effects on the experimental infectious deseases in animals.³) The present work was intended to obtain N⁴′-substituted derivatives of 2-(4′-aminobenzenesulfonamido)-4-[2-(5-nitro-2-furyl)vinyl]pyrimidine for the purpose of improving the gastro-intestinal absorption of the original compounds.

$$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{CH}_3 \\ \text{OHC} \\ \text{O} \\ \text{-NO}_2 \\ \\ \text{RNH} \\ \end{array} \begin{array}{c} \text{CH} = \text{CH}_0 \\ \text{O} \\ \text{-NO}_2 \\ \\ \text{N} \\ \end{array} \\ \begin{array}{c} \text{CH} = \text{CH}_0 \\ \text{O} \\ \text{-NO}_2 \\ \\ \text{N} \\ \end{array} \\ \begin{array}{c} \text{I} : R = \text{CH}_3 \text{CO}_1 \\ \text{II} : R = \text{C}_6 \text{H}_5 \text{CO}_2 \\ \text{II} : R = \text{C}_6 \text{H}_5 \text{CO}_1 \\ \text{V} : R = m\text{-Cl} - \text{C}_6 \text{H}_4 \text{CO}_1 \\ \\ \text{III} : R = \text{HOOC}_1 \\ \text{Chart 1} \end{array}$$

CH=CH- \sqrt{O} -NO₂
TABLE I. Chemical Properties RNH- \sqrt{O} -SO₂NH- \sqrt{O}

No.	R					Analysis (%)					
		Yield Appearance (%) (recryst. solvt.)		mp (°C)	Formula	Calcd.			Found		
						ć	H	N	ć	H	N
I	CH ₃ CO-	57	yellow needles (2-methoxyethanol)	272	$C_{18}H_{15}O_6N_5S$	50.34	3.54	16.70	50.12	3.67	16.37
II	C_6H_5CO-	53	yellow needles (acetic acid glacial)	263	$C_{23}H_{17}O_6N_5S$	56.21	3.49	14.25	56.30	3.55	14.22
III	HOOC- (CH ₂) ₂ CO-	68	yellow needles (acetic acid glacial)	283	$C_{20}H_{17}O_8N_5S$	49.27	3.51	14.36	49.91	3.53	14.36
IV	o-HOOC- C ₆ H ₄ CO-	54	yellow needles (acetic acid glacial)	285	$C_{24}H_{17}O_8N_5S$	53.82	3.20	13.08	53.50	3.25	13.41
V	m -Cl C_6H_4CO	59	yellow needles (pyridine-water (1:1))	278	$\mathrm{C_{23}H_{16}O_6N_5SCl}$	52.52	3.07	13.31	52.81	3.34	13.06

¹⁾ S. Wada, K. Kumaki, and I. Moriguchi, Chem. Pharm. Bull. (Tokyo), 17, 2168 (1969).

²⁾ Location: 3-41-8, Takada, Toshima-ku, Tokyo; a) Present adress: School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo.

³⁾ Unpublished data from the Biological Section of These Laboratories.

A dimethylformamide solution of 2-(p-acetoamidobenzenesulfonamido)-4-methylpyrimidine was reacted with 5-nitro-2-furaldehyde and obtained 2-(p-acetoamidobenzenesulfonamido)-4-[2-(5-nitro-2-furyl)vinyl]pyrimidine (I) in good yield as shown in Chart 1. The compounds, II—V in Chart 1, were similarly obtained from the corresponding 2-(p-acylamidobenzenesulfonamido)-4-methylpyrimidines with 5-nitro-2-furaldehyde. These products are listed in Table I.

The *in vitro* bacteriostatic activities of these compounds against *Staphylococcus aureus* 209 P were shown in Table II.

Table II. Bacteriostatic Activity Against Staphylococcus aureus 209 P

No.	\mathbf{R}	Minimum bacteriostatic concentration $(\mu g/ml)$					
	Н-	0.08					
· I	CH ₃ CO-	0.31					
II	C_6H_5CO-	0.63					
III	HOOC-(CH ₂) ₂ CO-	- 1.25					
${f IV}$	$o ext{-HOOC-C}_6 ext{H}_4 ext{CO-}$	1.25					
\mathbf{V}	m -Cl-C $_6$ H $_4$ CO-	1.25					
	Control	5.0					

control: 2-(p-aminobenzenesulfonamido)-4-methylpyrimidine

As indicated in Table II, the bacteriostatic activities of all compounds, I—V, are higher than 2-sulfanilamido-4-methylpyrimidine. It is interesting to note that these products indicate high bacteriostatic activities though N⁴-substituted derivatives are inactive.⁴⁾ Solubilities and gastro-intestinal absorption of these products will be reported later.

Experimental

2-(p-Acetoamidobenzenesulfonamido)-4-[2-(5-nitro-2-furyl)vinyl]pyrimidine (I)——A solution of 3.0 g of 2-(p-acetoamidobenzenesulfonamido)-4-methylpyrimidine dissolved in 10 ml of dimethylformamide was cooled, and conc. H_2SO_4 (3 ml) was added slowly. Then 1.5 g of 5-nitro-2-furaldehyde was added to this solution and the mixture was kept at 50—60° for 30 min. The solution was poured into 50 ml ofice-water. The resulting precipitate was filtered and washed with H_2O and then methanol.

2-(p-Benzamidobenzenesulfonamido)-4-[2-(5-nitro-2-furyl)vinyl]pyrimidine (II)—A solution of 3.7 g of 2-(p-benzamidobenzenesulfonamido)-4-methylpyrimidine dissolved in 30 ml of methanol was cooled, and p-toluenesulfonic acid (6 g) was dissolved. Then 2.4 g of 5-nitro-2-furaldehyde diacetate was added to this solution and the treatment was followed by the same way as described the above experiment.

2-(p-Acylamidobenzenesulfonamido) -4-[2-(5-nitro-2-furyl) vinyl]pyrimidines (Acyl:3'-Carboxypropionyl-(III), o-Carboxybenzoyl- (IV), and m-Chlorobenzoyl- (V))——The compounds, III, IV and V, were obtained by the treatment of 5-nitro-2-furaldehyde diacetate with 2-(p-acylamidobenzenesulfonamido)-4-methyl-pyrimidines. The treatment was followed by the same way as described the above experiment.

Test of in Vitro Bacteriostatic Activity—Bacteriostatic activity was tested against Staphylococcus aureus 209 P in a modified Kuwabara's medium as previous paper.¹⁾

Acknowledgement The authors are indebted to Miss Y. Takasaki and Miss T. Nishizawa for technical assistance. Thanks are also due to the members of the analytical section for elementary analysis.

⁴⁾ P. H. Bell and R.O. Roblin, Jr., J. Am. Chem. Soc., 64, 2905 (1942); M. Tsuruoka, Yakugaku Zasshi, 71, 336 (1951).