Synthesis of Alaremycin

Yong-Gang Wang,^a Masaaki Wachi,^b Yuichi Kobayashi*^a

^a Department of Biomolecular Engineering, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan

Fax +81(45)9245789; E-mail: ykobayas@bio.titech.ac.jp

^b Department of Bioengineering, Tokyo Institute of Technology, J2-14, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan *Received 1 November 2005*

Abstract: Methyl 5-azido-4-oxohexanoate was synthesized from 5-hexenoic acid in six steps and converted to the title compound by NaReO₄- and CF₃SO₃H-catalyzed reaction in Ac_2O/CCl_4 followed by hydrolysis of the methyl ester moiety.

Key words: amides, antibiotics, azides, palladium, rhenium

One of the authors (M.W.) has developed a new screening system for finding inhibitors of bacterial chromosome partitioning.¹ Using this assay system, alaremycin (1) was isolated from the culture broth of an actinomycete strain, and the producing strain was identified as Streptomyces *sp.* A012304.² While structurally similar primocarcin (2), known as an antitumor,³ shows low antibacterial activity, 1 does antibacterial effect on E. coli cells. Furthermore, the effect is enhanced by 5-aminolevulinic acid (ALA, 3), a precursor of heme biosynthesis, that is known to act as a prooxidant both in vivo and in vitro.⁴ The structural similarity between compounds 1-3 (Figure 1) suggests that alaremycin (1) exerts its property through a mechanistic pathway similar to those of 2 and 3. To continue investigation of 1 along this line we needed a fairly large amount of **1** by organic synthesis since the biological technology to obtain **1** seemed difficult. Herein, we report a synthesis of alaremycin (1).

Figure 1

The literature survey revealed that the α -(acetamido)vinyl ketone moiety of primocarcin (2) as well as the analogous amides was constructed by aldol reaction of the α -acetamido- β -keto ester with formaldehyde and subsequent decarboxylative elimination of the hydroxyl group.⁵ In an attempted sequence of reactions leading to 2, alaremycin was also synthesized. However, the key step suffers from

SYNLETT 2006, No. 3, pp 0481–0483 Advanced online publication: 06.02.2006 DOI: 10.1055/s-2006-926237; Art ID: U30005ST © Georg Thieme Verlag Stuttgart · New York low yields, and the starting material could be traced back incompletely. Thus, we felt it necessary to exploit a synthesis of **1** from a compound that is available easily. We chose the α -(azido)ethyl ketone **4** as a precursor of the α -(acetamido)vinyl ketone (**5a**) or the amino derivative **5b** (Equation 1) on the basis of our previous work⁶ as well as those reported in the literature.^{7,8}

A sequence of reactions to produce **4** and the conversion of **4** to **1** is shown in Scheme 1.⁹ Simple bromination of 5hexenoic acid (**6**)^{10,11} with Br₂ followed by reaction with hot KOH in H₂O^{12,13} produced methyl acetylene **7** in 80% yield. The possible intermediates, i.e., terminal acetylene and/or vinyl bromide(s), were not detected by ¹H NMR spectroscopy. Palladium-catalyzed reaction of **7** was carried out with PdCl₂(PhCN)₂ in refluxing MeCN according to the literature procedure¹⁴ to produce enol γ -lactone **8**¹⁵ and a small amount of the δ -lactone **10** (Figure 2). Being different from the literature, the reaction proceeded stereoselectively in our case. Bromination of lactone **8** followed by treatment with Et₃N in MeOH afforded the α -bromo ketone **9**, which was converted to the key intermediate **4** with NaN₃ in DMF in good yield.

Scheme 1 Synthesis of alaremycin (1)

mass. Unidentified products were also obtained when submitted to RONa in ROH (R = Me, Et), the conditions previously applied by us to an α -azido- γ -lactone (R = Et).⁶ On the other hand, reaction of 4 with Ac₂O at 120 °C in AcOH for 6 hours afforded 5a directly, but only in 25% yield with unreacted 4 and other by-products, while longer reaction resulted in formation of the by-products in larger quantity. We then examined NaReO₄-catalyzed reaction in Ac₂O under acidic conditions.⁸ Thus, reaction of 4 in Ac_2O in the presence of $NaReO_4$ (1 mol%) and CF₃SO₃H (1 mol%) at 50 °C afforded **1** in 46% yield. To improve the yield, the reaction was repeated in Ac₂O and a co-solvent such as Et₂O, CH₂Cl₂, THF, MeCN, CCl₄ in a 1:1 proportion at 50 °C for 8 hours. Among the co-solvents, CCl₄ was found to be most effective to afford **5a** in 63%.

Finally, hydrolysis of methyl ester **5a** with LiOH in aqueous MeOH produced **1** in 88% yield. The ¹H NMR and ¹³C NMR spectra in DMSO- d_6 and in MeOH- d_4 , respectively, were identical with those reported.²

In summary, we have established synthesis of alaremycin (1) starting with 5-hexenoic acid (6) in 26% total yield in 8 steps. The quantity of 1 synthesized is enough for biological study, and the following procedure will be helpful to repeat the synthesis for further study.

Brief Procedure Leading to Compound 1

To a solution of acid **6** (3.70 g, 32.4 mmol) in CH₂Cl₂ (15 mL) at -60 °C was added Br₂ (1.67 mL, 32.4 mmol) in CH₂Cl₂ (5 mL) dropwise. After 1.5 h at -60 °C to -50 °C, the solution was poured into sat. Na₂S₂O₃ with vigorous stirring. The mixture was extracted with CH₂Cl₂ to afford crude bromine adduct (8.53 g), which was used for the next reaction without further purification.

A mixture of the above compound and KOH (17.47 g, 311.4 mmol) in H_2O (30 mL) was refluxed for 10 h, diluted with H_2O (30 mL), and acidified to pH 2 by addition of 12 N HCl. The mixture was extracted with Et₂O three times to afford crude **7**, which was purified by distillation (3.02 g, 83%); bp 130 °C (10 Torr).

A solution of acid **7** (1.60 g, 14.3 mmol), $PdCl_2(PhCN)_2$ (54 mg, 0.14 mmol), and Et_3N (60 μ L, 0.43 mmol) in MeCN (25 mL) was refluxed for 5 h and concentrated. The residue was purified by chromatography (hexane–EtOAc) to afford enol lactone **8** (1.36 g, 85%).

To an ice-cold solution of lactone **8** (850 mg, 7.58 mmol) in CCl₄ (10 mL) was added Br₂ (0.39 mL, 7.57 mmol) in CCl₄ (2 mL) dropwise. After 30 min at 0 °C, the solution was concentrated to give a residue, which was dissolved in MeOH (10 mL) containing a few drops of Et₃N. After 1 h at r.t., the solution was concentrated, and the crude product was purified by chromatography (hexane– EtOAc) to furnish α -bromo ketone **9** (1.20 g, 71%). ¹H NMR (300 MHz, CDCl₃): δ = 1.77 (d, *J* = 7.0 Hz, 3 H), 2.49–2.78 (m, 2 H), 2.91 (ddd, *J* = 18.0, 7.5, 6.0 Hz, 1 H), 3.14 (ddd, *J* = 18.0, 6.5, 6.0 Hz, 1 H), 3.69 (s, 3 H), 4.49 (q, *J* = 7 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 20.2, 28.4, 33.6, 47.5, 52.0, 172.8, 202.9.

A mixture of α -bromo ketone **9** (1.20 g, 5.38 mmol) and NaN₃ (699 mg, 10.8 mmol) in DMF (5 mL) was stirred at r.t. for 1 h, and diluted with H₂O. The resulting mixture was extracted with Et₂O three times to give a residue, which was purified by chromatography (hexane–EtOAc) to furnish azide **4** (976 mg, 98%). ¹H NMR (300 MHz, CDCl₃): δ = 1.41 (d, *J* = 7.0 Hz, 3 H), 2.56–2.62 (m, 2 H), 2.77–2.83 (m, 2 H), 3.63 (s, 3 H), 3.97 (q, *J* = 7.0 Hz, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 15.8, 27.6, 33.7, 51.9, 63.2, 172.6, 205.8.

To a solution of NaReO₄ (1 mg, 0.0037 mmol) and CF₃SO₃H (1 µL, 0.011 mmol) in Ac₂O (0.5 mL) and CCl₄ (0.5 mL) was added azide **4** (50 mg, 0.27 mmol). The mixture was heated to 50 °C for 8 h and concentrated to produce a residue, which was purified by chromatography (hexane–EtOAc) to afford amide **5a** (34 mg, 63%). ¹H NMR (300 MHz, CDCl₃): δ = 2.12 (s, 3 H), 2.68 (t, *J* = 6.5 Hz, 2 H), 3.11 (t, *J* = 6.5 Hz, 2 H), 3.70 (s, 3 H), 5.84 (t, *J* = 1 Hz, 1 H), 6.93 (d, *J* = 1 Hz, 1 H), 7.99 (br s, 1 H). ¹³C NMR (75 MHz, CDCl₃): δ = 24.8, 28.1, 30.8, 52.0, 109.5, 137.7, 169.0, 172.7, 194.9.

To a solution of amide **5a** (180 mg, 0.904 mmol) in MeOH (1.1 mL) and H_2O (1.1 mL) was added 1 N LiOH (1.2 mL, 1.2 mmol). The mixture was stirred at 0 °C for 30 min, acidified to pH 3–4 with 10% tartaric acid, and extracted with EtOAc three times. The crude acid **1** thus obtained was purified by chromatography (hexane–EtOAc) to afford acid **1** (148 mg, 88%); mp 132–135 °C (recrystallized from MeOH–EtOAc–hexane).

References and Notes

- Wachi, M.; Iwai, N.; Kunihisa, A.; Nagai, K. *Biochimie* 1999, 81, 909.
- (2) Awa, A.; Iwai, N.; Ueda, T.; Suzuki, K.; Asano, S.; Yamagishi, J.; Nagai, K.; Wachi, M. Biosci. Biotechnol. Biochem. 2005, 69, 1721.
- (3) Isono, K.; Suzuki, S. J. Antibiot. Ser. A 1962, 15, 77.

LETTER

- (4) (a) Onuki, J.; Medeiros, M. H.; Bechara, E. J.; Di Mascio, P. *Biochim. Biophys. Acta* **1994**, *1225*, 259. (b) Neal, R.; Yang, P.; Fiechtl, J.; Yildiz, D.; Gurer, H.; Ercal, N. *Toxicol. Lett.* **1997**, *91*, 169. (c) Monteiro, H. P.; Abdalla, D. S.; Augusto, O.; Bechara, E. J. Arch. Biochem. Biophys. **1989**, *271*, 206.
- (5) Bowman, R. E.; Closier, M. D.; Islip, P. J. J. Chem. Soc. **1965**, 470.
- (6) Kobayashi, Y.; Yoshida, S.; Nakayama, Y. *Eur. J. Org. Chem.* **2001**, 1873.
- (7) (a) Manis, P. A.; Rathke, M. W. J. Org. Chem. 1980, 45, 4952. (b) White, J. D.; Badger, R. A.; Kezar, H. S. III; Pallenberg, A. J.; Schiehser, G. A. Tetrahedron 1989, 45, 6631.
- (8) Effenberger, F.; Beisswenger, T.; Az, R. Chem. Ber. 1985, 118, 4869.
- (9) Another sequence shown below produced (α-chloro)ethyl ketone i in low yield (Scheme 2).

Scheme 2

- (10) Acid **6** is commercially available, but was conveniently prepared from cyclohexanone in 67% yield by oxidative ring cleavage with H_2O_2 , FeSO₄, and CuSO₄.¹¹
- (11) Ogibin, Y. N.; Starostin, E. K.; Aleksandrov, A. V.; Pivnitsky, K. K.; Nikishin, G. I. Synthesis 1994, 901.
- (12) Starostin, E. K.; Ignotenko, A. V.; Lapitskaya, M. A.; Pivnitsky, K. K.; Nikishin, G. I. *Russ. Chem. Bull.* 2001, 50, 833.
- (13) Although the original procedure¹² uses PEG-2000 as an additive, the reaction in H_2O was found to be quite successful.
- (14) Lambert, C.; Utimoto, K.; Nozaki, H. *Tetrahedron Lett.* **1984**, *25*, 5323.
- (15) Chan, D. M. T.; Marder, T. B.; Milstein, D.; Taylor, N. J. J. Am. Chem. Soc. 1987, 109, 6385.