Synthesis of Alaremycin

Yong-Gang Wang, ${ }^{\text {a }}$ Masaaki Wachi, ${ }^{\text {b }}$ Yuichi Kobayashi*a
${ }^{\text {a }}$ Department of Biomolecular Engineering, Tokyo Institute of Technology, B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
Fax $+81(45) 9245789$; E-mail: ykobayas @bio.titech.ac.jp
${ }^{\mathrm{b}}$ Department of Bioengineering, Tokyo Institute of Technology, J2-14, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
Received 1 November 2005

Abstract

Methyl 5-azido-4-oxohexanoate was synthesized from 5-hexenoic acid in six steps and converted to the title compound by NaReO_{4} - and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$-catalyzed reaction in $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{CCl}_{4}$ followed by hydrolysis of the methyl ester moiety.

Key words: amides, antibiotics, azides, palladium, rhenium

One of the authors (M.W.) has developed a new screening system for finding inhibitors of bacterial chromosome partitioning. ${ }^{1}$ Using this assay system, alaremycin (1) was isolated from the culture broth of an actinomycete strain, and the producing strain was identified as Streptomyces $s p$. A012304. ${ }^{2}$ While structurally similar primocarcin (2), known as an antitumor, ${ }^{3}$ shows low antibacterial activity, $\mathbf{1}$ does antibacterial effect on E. coli cells. Furthermore, the effect is enhanced by 5 -aminolevulinic acid (ALA, 3), a precursor of heme biosynthesis, that is known to act as a prooxidant both in vivo and in vitro. ${ }^{4}$ The structural similarity between compounds $\mathbf{1}-\mathbf{3}$ (Figure 1) suggests that alaremycin (1) exerts its property through a mechanistic pathway similar to those of $\mathbf{2}$ and $\mathbf{3}$. To continue investigation of $\mathbf{1}$ along this line we needed a fairly large amount of $\mathbf{1}$ by organic synthesis since the biological technology to obtain 1 seemed difficult. Herein, we report a synthesis of alaremycin (1).

Figure 1

The literature survey revealed that the α-(acetamido)vinyl ketone moiety of primocarcin (2) as well as the analogous amides was constructed by aldol reaction of the α-aceta-mido- β-keto ester with formaldehyde and subsequent decarboxylative elimination of the hydroxyl group. ${ }^{5}$ In an attempted sequence of reactions leading to $\mathbf{2}$, alaremycin was also synthesized. However, the key step suffers from

Advanced online publication: 06.02.2006
DOI: 10.1055/s-2006-926237; Art ID: U30005ST
© Georg Thieme Verlag Stuttgart • New York
low yields, and the starting material could be traced back incompletely. Thus, we felt it necessary to exploit a synthesis of $\mathbf{1}$ from a compound that is available easily. We chose the α-(azido)ethyl ketone 4 as a precursor of the α-(acetamido)vinyl ketone (5a) or the amino derivative $\mathbf{5 b}$ (Equation 1) on the basis of our previous work ${ }^{6}$ as well as those reported in the literature. ${ }^{7,8}$

Equation 1

A sequence of reactions to produce 4 and the conversion of $\mathbf{4}$ to $\mathbf{1}$ is shown in Scheme 1. ${ }^{9}$ Simple bromination of 5hexenoic acid (6) ${ }^{10,11}$ with Br_{2} followed by reaction with hot KOH in $\mathrm{H}_{2} \mathrm{O}^{12,13}$ produced methyl acetylene 7 in 80% yield. The possible intermediates, i.e., terminal acetylene and/or vinyl bromide(s), were not detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Palladium-catalyzed reaction of 7 was carried out with $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ in refluxing MeCN according to the literature procedure ${ }^{14}$ to produce enol γ-lactone $\mathbf{8}^{15}$ and a small amount of the δ-lactone $\mathbf{1 0}$ (Figure 2). Being different from the literature, the reaction proceeded stereoselectively in our case. Bromination of lactone $\mathbf{8}$ followed by treatment with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH afforded the α-bromo ketone 9 , which was converted to the key intermediate 4 with NaN_{3} in DMF in good yield.

10
Figure 2

In order to obtain (α-acetamido)vinyl ketone (5a), we first examined the following two-step conversion on the basis of the previous success with similar compounds by us ${ }^{6}$ and others: ${ }^{7}$ (1) base-catalyzed reaction to afford (α-amino) vinyl ketone ($\mathbf{5 b}$); (2) acetylation of $\mathbf{5 b}$. Thus, azide $\mathbf{4}$ was exposed to $\mathrm{ROLi} / \mathrm{ROH}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, t-\mathrm{Bu})$ at room temperature in CCl_{4} or in ROH , and the crude product was treated with AcCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$. However, a trace amount of 5a was detected by TLC in the product

Scheme 1 Synthesis of alaremycin (1)
mass. Unidentified products were also obtained when submitted to RONa in $\mathrm{ROH}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$, the conditions previously applied by us to an α-azido- γ-lactone $(\mathrm{R}=\mathrm{Et}) .{ }^{6}$ On the other hand, reaction of 4 with $\mathrm{Ac}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ in AcOH for 6 hours afforded 5a directly, but only in 25% yield with unreacted 4 and other by-products, while longer reaction resulted in formation of the by-products in larger quantity. We then examined NaReO_{4}-catalyzed reaction in $\mathrm{Ac}_{2} \mathrm{O}$ under acidic conditions. ${ }^{8}$ Thus, reaction of 4 in $\mathrm{Ac}_{2} \mathrm{O}$ in the presence of $\mathrm{NaReO}_{4}(1 \mathrm{~mol} \%)$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(1 \mathrm{~mol} \%)$ at $50^{\circ} \mathrm{C}$ afforded $\mathbf{1}$ in 46% yield. To improve the yield, the reaction was repeated in $\mathrm{Ac}_{2} \mathrm{O}$ and a co-solvent such as $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, $\mathrm{MeCN}, \mathrm{CCl}_{4}$ in a $1: 1$ proportion at $50^{\circ} \mathrm{C}$ for 8 hours. Among the co-solvents, CCl_{4} was found to be most effective to afford $\mathbf{5 a}$ in 63%.
Finally, hydrolysis of methyl ester $\mathbf{5 a}$ with LiOH in aqueous MeOH produced $\mathbf{1}$ in 88% yield. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra in DMSO- d_{6} and in $\mathrm{MeOH}-d_{4}$, respectively, were identical with those reported. ${ }^{2}$
In summary, we have established synthesis of alaremycin (1) starting with 5 -hexenoic acid (6) in 26% total yield in 8 steps. The quantity of $\mathbf{1}$ synthesized is enough for biological study, and the following procedure will be helpful to repeat the synthesis for further study.

Brief Procedure Leading to Compound 1

To a solution of acid $6(3.70 \mathrm{~g}, 32.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added $\mathrm{Br}_{2}(1.67 \mathrm{~mL}, 32.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ dropwise. After 1.5 h at $-60^{\circ} \mathrm{C}$ to $-50^{\circ} \mathrm{C}$, the solution was poured into sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ with vigorous stirring. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford crude bromine adduct (8.53 g), which was used for the next reaction without further purification.
A mixture of the above compound and $\mathrm{KOH}(17.47 \mathrm{~g}, 311.4 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was refluxed for 10 h , diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and acidified to pH 2 by addition of 12 N HCl . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times to afford crude 7, which was purified by distillation ($3.02 \mathrm{~g}, 83 \%$); bp $130{ }^{\circ} \mathrm{C}$ (10 Torr).
A solution of acid $7(1.60 \mathrm{~g}, 14.3 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}(54 \mathrm{mg}$, $0.14 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$ was refluxed for 5 h and concentrated. The residue was purified by chromatography (hexane-EtOAc) to afford enol lactone 8 (1.36 g , 85%).

To an ice-cold solution of lactone $\mathbf{8}(850 \mathrm{mg}, 7.58 \mathrm{mmol})$ in CCl_{4} $(10 \mathrm{~mL})$ was added $\mathrm{Br}_{2}(0.39 \mathrm{~mL}, 7.57 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(2 \mathrm{~mL})$ dropwise. After 30 min at $0^{\circ} \mathrm{C}$, the solution was concentrated to give a residue, which was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ containing a few drops of $\mathrm{Et}_{3} \mathrm{~N}$. After 1 h at r.t., the solution was concentrated, and the crude product was purified by chromatography (hexane$\mathrm{EtOAc})$ to furnish α-bromo ketone $9(1.20 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.49-2.78(\mathrm{~m}, 2 \mathrm{H})$, 2.91 (ddd, $J=18.0,7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (ddd, $J=18.0,6.5,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=20.2,28.4,33.6,47.5,52.0,172.8,202.9$.
A mixture of α-bromo ketone $9(1.20 \mathrm{~g}, 5.38 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(699$ $\mathrm{mg}, 10.8 \mathrm{mmol})$ in DMF (5 mL) was stirred at r.t. for 1 h , and diluted with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times to give a residue, which was purified by chromatography (hexane-EtOAc) to furnish azide $4(976 \mathrm{mg}, 98 \%) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.56-2.62(\mathrm{~m}, 2 \mathrm{H})$, $2.77-2.83(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.8,27.6,33.7,51.9,63.2,172.6$, 205.8.

To a solution of $\mathrm{NaReO}_{4}(1 \mathrm{mg}, 0.0037 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(1 \mu \mathrm{~L}$, $0.011 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and $\mathrm{CCl}_{4}(0.5 \mathrm{~mL})$ was added azide $4(50 \mathrm{mg}, 0.27 \mathrm{mmol})$. The mixture was heated to $50^{\circ} \mathrm{C}$ for 8 h and concentrated to produce a residue, which was purified by chromatography (hexane-EtOAc) to afford amide 5a ($34 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.12(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2$ H), $3.11(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.84(\mathrm{t}, J=1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.8,28.1,30.8,52.0,109.5,137.7,169.0,172.7,194.9$.
To a solution of amide $\mathbf{5 a}(180 \mathrm{mg}, 0.904 \mathrm{mmol})$ in $\mathrm{MeOH}(1.1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~mL})$ was added $1 \mathrm{~N} \mathrm{LiOH}(1.2 \mathrm{~mL}, 1.2 \mathrm{mmol})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , acidified to $\mathrm{pH} 3-4$ with 10% tartaric acid, and extracted with EtOAc three times. The crude acid 1 thus obtained was purified by chromatography (hexane-EtOAc) to afford acid 1 (148 $\mathrm{mg}, 88 \%$); mp $132-135^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{MeOH}-\mathrm{EtOAc}$-hexane).

References and Notes

(1) Wachi, M.; Iwai, N.; Kunihisa, A.; Nagai, K. Biochimie 1999, 81, 909.
(2) Awa, A.; Iwai, N.; Ueda, T.; Suzuki, K.; Asano, S.; Yamagishi, J.; Nagai, K.; Wachi, M. Biosci. Biotechnol. Biochem. 2005, 69, 1721.
(3) Isono, K.; Suzuki, S. J. Antibiot. Ser. A 1962, 15, 77.
(4) (a) Onuki, J.; Medeiros, M. H.; Bechara, E. J.; Di Mascio, P. Biochim. Biophys. Acta 1994, 1225, 259. (b) Neal, R.; Yang, P.; Fiechtl, J.; Yildiz, D.; Gurer, H.; Ercal, N. Toxicol. Lett. 1997, 91, 169. (c) Monteiro, H. P.; Abdalla, D. S.; Augusto, O.; Bechara, E. J. Arch. Biochem. Biophys. 1989, 271, 206.
(5) Bowman, R. E.; Closier, M. D.; Islip, P. J. J. Chem. Soc. 1965, 470.
(6) Kobayashi, Y.; Yoshida, S.; Nakayama, Y. Eur. J. Org. Chem. 2001, 1873.
(7) (a) Manis, P. A.; Rathke, M. W. J. Org. Chem. 1980, 45, 4952. (b) White, J. D.; Badger, R. A.; Kezar, H. S. III; Pallenberg, A. J.; Schiehser, G. A. Tetrahedron 1989, 45, 6631.
(8) Effenberger, F.; Beisswenger, T.; Az, R. Chem. Ber. 1985, $118,4869$.
(9) Another sequence shown below produced (α-chloro)ethyl ketone \mathbf{i} in low yield (Scheme 2).

Scheme 2
(10) Acid 6 is commercially available, but was conveniently prepared from cyclohexanone in 67% yield by oxidative ring cleavage with $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{FeSO}_{4}$, and $\mathrm{CuSO}_{4} .{ }^{11}$
(11) Ogibin, Y. N.; Starostin, E. K.; Aleksandrov, A. V.; Pivnitsky, K. K.; Nikishin, G. I. Synthesis 1994, 901.
(12) Starostin, E. K.; Ignotenko, A. V.; Lapitskaya, M. A.; Pivnitsky, K. K.; Nikishin, G. I. Russ. Chem. Bull. 2001, 50, 833.
(13) Although the original procedure ${ }^{12}$ uses PEG-2000 as an additive, the reaction in $\mathrm{H}_{2} \mathrm{O}$ was found to be quite successful.
(14) Lambert, C.; Utimoto, K.; Nozaki, H. Tetrahedron Lett. 1984, 25, 5323.
(15) Chan, D. M. T.; Marder, T. B.; Milstein, D.; Taylor, N. J. J. Am. Chem. Soc. 1987, 109, 6385.

