(Chem. Pharm. Bull.) **27**(12)3176—3179(1979)

UDC 547.853.3.04:547.254.6.04

Triazolo[4,5-d]pyrimidines. IV.¹⁾ The Grignard Reaction of 3-Substituted 3*H*-1,2,3-Triazolo[4,5-d]pyrimidines

Takeo Higashino,^{2a)} Tatsuhiko Katori,^{2b)} Shizuo Yoshida, and Eisaku Hayashi^{2a)}

Shizuoka College of Pharmacy^{2a}) and Central Research Laboratory, S S Pharmaceutical Co., Ltd.^{2b})

(Received June 1, 1979)

Grignard reactions of 3-methyl- (1m) and 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine (1p) resulted in the formation of 7-alkyl-6,7-dihydro-3-methyl- (2m) and 7-alkyl-6,7-dihydro-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidines (2p) in moderate yields. These dihydro compounds 2m and 2p were converted into 7-alkyl-3-methyl- (3m) and 7-alkyl-3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidines (3p), respectively, by oxidation with potassium ferricyanide.

Keywords—3-substituted 3H-1,2,3-triazolo[4,5-d]pyrimidines; Grignard reaction; 3-substituted 7-alkyl-6,7-dihydro-3H-1,2,3-triazolo[4,5-d]pyrimidines; oxidation; 3-substituted 7-alkyl-3H-1,2,3-triazolo[4,5-d]pyrimidines

Many reports on the Grignard reactions of π -deficient condensed pyrimidines have been published; for instance, quinoazoline (A) reacted with Grignard reagents to give 4-alkyl-3, 4-dihydroquinazoline (A'), 3) pyrido[2,3-d]pyrimidine (B) gave 4-alkyl-3,4-dihydropyrido[2,3-d]pyrimidine (B'), 4) 1-substituted 1*H*-pyrazolo[3,4-d]pyrimidine (C) afforded 4-alkyl-4,5-dihy-

	H _. R'		H	H _R '		R'	
N N N R	R'Mg	$\stackrel{(X(G))}{\longrightarrow} \stackrel{N}{\stackrel{N}{\stackrel{N}{\stackrel{N}}} \stackrel{NMgX}{} \stackrel{H_2O}{\longrightarrow}$	$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	$ \begin{array}{ccc} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & $	N N R	N	
1 -R	G	-R'		ield (%)	3 Yi	eld (%)	
1m -CH ₃	G-1	CH ₃	2m-1	30	3m-1	50	
1 m $-\text{CH}_3$	G-1'	CD_3	2m-1'	34	3m-1'	46	
1m -CH ₃	G-2	$-CH_2CH_3$	2m-2	53	3m-2	73	
1m −CH ₃	G-2'	$-CD_2CD_3$	2m-2'	50	3m-2'	68	
1 m $-\text{CH}_3$	G-2''	$-CH_2CD_3$	2 m $-2^{\prime\prime}$	50	3m-2′′	69	
1m -CH ₃	G-3	$-CH(CH_3)_2$	2m −3	80	3 m −3	80	
1 m -CH ₃	G-3'	$-CH(CD_3)_2$	2m-3'	81	3m −3′	77	
1m −CH ₃	G-4	$-C(CH_3)_3$	2m-4	86	3m-4	86	
1m $-\text{CH}_3$	G-5	$-CH_2C_6H_5$	2m-5	62	3m −5	62	
1 m −CH ₃	G-6	$-C_6H_5$	2m-6	78	3m −6	78	
1 m −CH ₃	G-6'	$-C_6D_5$	2m-6'	80	3m −6′	73	
1 p $-C_6H_5$	G-1	$-CH_3$	2 p - 1	86	3 p −1	43	
1 p $-C_6H_5$	G-2	$-CH_2CH_3$	2 p −2	79	3 p −2	44	
1 p $-C_6H_5$	G-3	$-CH(CH_3)_2$	2 p −3	83	3 p −3	32	
1 p $-C_6H_5$	G-5	$-\mathrm{CH_2C_6H_5}$	2 p −5	72	3 p −5	44	
1 p $-C_6H_5$	G-6	$-C_6H_5$	2 p −6	71	3 p −6	41	
		Chart 1					

¹⁾ Part III: T. Higashino, T. Katori, and E. Hayashi, Chem. Pharm. Bull. (Tokyo), 27, 2861 (1979).

²⁾ Location: a) 2-2-1 Oshika, Shizuoka; b) 1143 Nanpeidai, Navita.

³⁾ T. Higashino, Yakugaku Zasshi, 80, 245 (1960).

⁴⁾ T. Higashino and E. Hayashi, Chem. Pharm. Bull. (Tokyo), 18, 1457 (1970).

dro-1*H*-pyrazolo[3,4-*d*]pyrimidines (C'),⁵⁾ and 9-phenyl-9*H*-purine (D) yielded 6-alkyl-1,6-di-hydro-9-phenyl-9*H*-purines (D').⁶⁾ These results can be summarized as follows; the alkyl dihydro derivatives of condensed pyrimidines are formed by the addition of Grignard reagents across a double bond between the ring carbon and nitrogen atoms.

With the expectation that a similar reaction would take place, we reacted 3-substituted 3H-1,2,3-triazolo[4,5-d]pyrimidines (1) with Grignard reagents, and found that the expected reaction products, 3-substituted 7-alkyl-6,7-dihydro-1,2,3-triazolo[4,5-d]pyrimidines (2), were formed.

The Grignard reagents (G) used in this study were as follows: methyl- (G-1) and trideuteriomethyl-magnesium iodide (G-1'), ethyl-(G-2), pentadeuterioethyl- (G-2'), 2,2,2-trideuterioethyl- (G-2"), 1-methylethyl- (G-3) and 1-trideuteriomethyl-2,2,2-trideuterioethyl-magnesium bromide (G-3'), 1,1-dimethylethylmagnesium chloride (G-4), phenylmethyl- (G-5), phenyl- (G-6) and pentadeuteriophenyl-magnesium bromide (G-6').

TABLE I. EMM Values and IR Spectra of 2 and 3

Compd.	mp (°C)	Composition	EMM: M+ m/e		$IR v_{max}^{KBr} cm^{-1}$	
compa.	p (C)	Composition	Observed	Errora)	=NH	
2m-1	$185-187^{b}$	$C_6H_9N_5$	151.0850	-0.7	3200	
2m-1'	$183-184^{b}$	$C_6H_6D_3N_5$	154.1038	-0.7	3200	
2m-2	_c)	$C_7H_{11}N_5$	165.1008	-0.6	3200^{f}	
2m-2'	_c)	$\mathrm{C_7H_6D_5N_5}$	170.1329	0.1	3200^{f}	
2m-2''	_c)	$C_7H_8D_3N_5$	168.1180	-2.1	3200^{f}	
2m −3	_c)	$C_8H_{13}N_5$	179.1163	-0.7	3200^{f}	
2m-3'	_c)	$C_8H_7D_6N_5$	185.1553	0.6	3200^{f}	
2m-4	$156-157^{b}$	$C_9H_{15}N_5$	193.1308	-1.9	3260	
2m-5	_c)	$C_{12}H_{13}N_{5}$	227.1156	-1.5	3200^{f}	
2m −6	_c)	$C_{11}H_{11}N_5$	213.1004	-0.9	3200f)	
2m-6'	_c)	$C_{11}H_6D_5N_5$	218.1309	-1.9	3200^{f}	
2 p −1	$187 - 188^{b}$	$C_{11}H_{11}N_5$	213.1015	0.1	3200	
2 p −2	$129-130^{b}$	$C_{12}H_{13}N_{5}$	227.1166	-0.4	3200	
2 p −3	_c)	$C_{13}H_{15}N_{5}$	241.1333	0.3	3210^{f}	
2 p - 5	$125-126^{b}$	$C_{17}H_{15}N_{5}$	289.1345	1.5	3190	
2 p −6	$152-154^{b}$	$C_{16}H_{13}N_{5}$	275.1195	2.1	3360	
3m-1	80— 81 ^{b)}	$C_6H_7N_5$	149.0705	0.3		
3m-1'	8283^{b}	$C_6H_4D_3N_5$	152.0874	-1.5		
3 m −2	_d)	$C_7H_9N_5$	163.0842	-1.5	VolVerlanderson	
3m-2'	_d)	$C_7H_4D_5N_5$	168.1176	0.4		
3m-2''	_d)	$C_7H_6D_3N_5$	166.1046	0.0		
3 m −3	$61-62^{b}$	$C_8H_{11}N_5$	177.1011	-0.3		
3m-3'	$61-62^{b}$	$C_8H_5D_6N_5$	183.1386	-0.4	_	
$3 \mathrm{m} - 4$	87— 88b)	$C_9H_{13}N_5$	191.1182	1.0	-	
3 m −5	82— 83 ^{b)}	$C_{12}H_{11}N_{5}$	225.1008	-0.7		
3 m −6	$141-142^{b}$	$C_{11}H_9N_5$	211.0858	-0.1		
$3 \mathrm{m} - 6'$	$142-143^{b}$	$C_{11}H_4D_5N_5$	216.1188	1.5		
3 p −1	$116-117^{b}$	$C_{11}H_9N_5$	211.0865	0.6		
3 p -2	$44-45^{b}$	$C_{12}H_{11}N_{5}$	225.1022	0.7		
3 p −3	$72-74^{(e)}$	$C_{13}H_{13}N_5$	239.1170	-0.2		
3 p −5	$123-125^{e}$	$C_{17}H_{13}N_{5}$	287.1176	0.3		
3 p −6	127-128e	$C_{16}H_{11}N_{5}$	273.1013	-0.2		

a) Error from the theoretical value in millimass units.

b) Colorless needles from benzene or petr. ether.

c) Vicid oil.

d) Colorless liquid.

e) Slightly yellow needles from petr. ether.

f) Neat.

⁵⁾ T. Higashino, Y. Iwai, and E. Hayashi, Yakugaku Zasshi, 94, 666 (1974).

⁶⁾ E. Hayashi, N. Shimada, and Y. Matsuoka, Yakugaku Zasshi, 99, 114 (1979).

TABLE II. NMR Data for 2 and 3

	NMR (in CDCl ₃) ppm ^{a)}						
Compd.	N^3 – $\widetilde{CH_3}$ s	$N^3 - C_6 H_5{}^m$	C5-H	N ⁶ -H ^{bs}	C7–H	C7-R	
2m-1b)	3.75	-	7.11 ^d ,c)	8.0	5.07 ^q	1.41 ^d (CH ₃ , J=7 Hz)	
$2m-1^{\prime b}$	3.75		$7.10^{d,c}$	8.0	$5.05^{\rm s}$	_	
2 m−2	3.92		$7.21^{d,c}$	6.8	$5.10^{t,d}$	$1.5-2.2^{\text{m}}, 0.97^{\text{t}} \text{ (CH}_2\text{CH}_3, J=8 \text{ Hz)}$	
2 m−2′	3.91		$7.20^{d,c}$	7.0	5.08^{s}	_	
2m-2′′	3.92	-	$7.21^{d,c}$	6.6	$5.12^{t,d}$	$1.86^{d,d}$ (CH ₂ CD ₃)	
2 m−3	3.93	_	$7.25^{d,c}$	6.7	$4.99^{d,d}$	$1.4-2.4^{\rm m}, 0.95^{\rm d}, 0.39^{\rm d}$ (CH(CH ₃) ₂ , $J=8$ Hz)	
2m-3′	3.90	_	$7.25^{d,c}$	6.6	$4.95^{d,d}$	$2.0^{d,d}$ (CH(CD ₃) ₂)	
2m-4	3.90		$7.30^{d,c}$	6.9	$4.72^{\rm s}$	$0.99^{s} (C(CH_3)_3)$	
2m −5	3.87	<u> </u>	$7.01^{d,c}$	6.0	5.30 ^{dd} ,e)	$3.38^{\mathrm{dd},e}$, $2.95^{\mathrm{dd},e}$, $7.1-7.5^{\mathrm{m}}$ (CH $_2\mathrm{C_6H_5}$)	
2m-6	3.78		f)	7.1	5.89^{s}	$7.2-7.4^{\rm m}~({ m C_6H_5})$	
2m-6′	3.79		$7.03^{g_{)}}$	7.0	5.89^{s}		
2 p -1	***********	7.2 - 8.1	$7.84^{d,h}$	7.2	5.13^{q}	$1.51^{\rm d}$ (CH ₃ , $J = 7$ Hz)	
2 p –2		6.9—8.1	$7.80^{d,h}$	6.7	$5.10^{t,d}$	$1.7-2.2^{\mathrm{m}}, 1.03^{\mathrm{t}}$ (CH ₂ CH ₃ , $J=8$ Hz)	
2 p −3	-	6.9-8.0	$7.78^{d,h}$	7.1	$4.94^{d,d}$	$1.7-2.4^{\text{m}}, 0.94^{\text{d}}, 0.97^{\text{d}}$ (CH(CH ₃) ₂), $J=8$ Hz)	
2 p −5	_	6.5—8.0	$7.81^{d,h}$	6.0	5.33 ^{dd} ,e)	$3.37^{\mathrm{dd},e}$, $3.05^{\mathrm{dd},e}$, $7.2-7.4^{\mathrm{m}}$ (CH $_2\mathrm{C}_6\mathrm{H}_5$)	
2 p −6		6.7 - 8.2	$7.77^{d,h}$	6.8	$5.93^{\rm s}$	$7.2-7.3^{\mathrm{m}} (\mathrm{C_6H_5})$	
3 m−1	4.37		9.03^{s}	_		$3.02^{s} (CH_{3})$	
3 m-1′	4.32		$8.99^{\rm s}$				
3 m −2	4.35	_	$9.03^{\rm s}$			$3.41^{ m q}, 1.53^{ m t} { m (CH_2CH_3},$	
3 m−2′	4.37		$9.00^{\rm s}$			_	
3 m -2′′	4.39		9.08^{s}	_	_	$3.28^{\rm s}~({ m CH_2CD_3})$	
3m −3	4.38		9.09^{s}		_	$3.90^{\rm m},1.45^{\rm d}({ m CH}({ m CH}_3)_2,\ J\!=\!8{ m Hz})$	
3 m −3′	4.37		$9.04^{ m s}$			$3.87^{s} (CH(CD_3)_2)$	
3 m−4	4.35		$9.06^{\rm s}$		_	$1.65^{s} (C(CH_3)_3)$	
3 m− 5	4.28		9.00^{s}			$4.63^{\rm s}, 7.1 - 7.6^{\rm m} ({\rm CH_2C_6H_5})$	
3m-6	4.33	-	$9.11^{\rm s}$			$7.4-8.9^{\mathrm{m}} (\mathrm{C_6H_5})$	
3m-6′	4.30		$9.05^{\rm s}$		_	_	
3 p −1		7.4 - 8.4	$9.07^{\rm s}$			$3.07^{\rm s} ({\rm CH_3})$	
3 p −2	_	7.4—8.4	$9.06^{\rm s}$		_	$3.48^{\rm q}, 1.57^{\rm t}({\rm CH_2CH_3},$	
3 p −3		7.4—8.4	$9.12^{\rm s}$		-	$3.98^{\rm m}$, $1.60^{\rm d}$ (CH(CH ₃) ₂ , $J = 8$ Hz)	
3 p −5	_	6.7-8.3	9.04	_		$4.67^{\rm s}, 6.7 - 8.3^{\rm m, i}$ (CH ₂ C ₆ H ₅)	
3 p −6	_	7.3 - 9.1	9.20			$7.3-9.1^{m,i}$ (C ₆ H ₅)	

<sup>a) bs, broad singlet and exchangeable with D₂O; d, doublet; dd, doublet of doublets; m, multiplet; q, quartet; s, singlet: t, triplet.
b) In dimethyl sulfoxide-d₆ (DMSO-d₆).
c) J_{5,6}=3 Hz, changeable into a singlet on addition of D₂O.
d) J=4 Hz.</sup>

Ha e) ABX pattern (C7—C6—C6H5, $J_{a,x}$ =8 Hz, $J_{b,x}$ =4 Hz, $J_{a,b}$ =14 Hz). Hx Hb

f) Overlapping with $C^2-C_6H_5$.

g) $J_{5,6}=2$ Hz.

h) $J_{5,6}=4$ Hz, changeable into a singlet on addition of D_2O .

i) Overlapping with $N^3-C_6H_5$.

The molar ratio of 3-methyl-3H-1,2,3-triazolo[4,5-d]pyrimidine ($1\mathbf{m}$)⁷⁾ to alkyl halide used for the preparation of G was set at 1:1.2. When a mixture of $1\mathbf{m}$ and G was refluxed for 3 hr in ether and the resulting adducts were hydrolyzed, 7-alkyl-6,7-dihydro-3-methyl-3H-1,2,3-triazolo[4,5-d]pyrimidines ($2\mathbf{m}$) were formed in moderate yields (Chart 1). A similar reaction was also found to take place between 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine ($1\mathbf{p}$)⁸⁾ and G in tetrahydrofuran (THF), affording the dihydro compounds ($2\mathbf{p}$) in good yields.

The structures of the dihydro compounds (2) were established as follows. The m/e value of the molecular ion (M⁺) in exact mass measurement (EMM) showed that 1 combined with G in a 1:1 ratio, and the infrared absorption (IR) spectrum confirmed the presence of an =NH group (3200 cm⁻¹) in each dihydro compound (see Table I). The nuclear magnetic resonance (NMR) spectra of 1m and 1p showed the C⁷-hydrogen signals at 9.67 and 9.68 ppm, respectively. However, in the dihydro compounds (2) the C⁷-hydrogen signals lay between 4.72 and 5.93 ppm (Table II). These upfield shifts were compatible with saturation of the C⁷,N⁶-double bond.

The dihydro compounds (2) were converted into 3-substituted 7-alkyl-3H-1,2,3-triazolo-[4,5-d] pyrimidines (3) in moderate yields by oxidation with potassium ferricyanide.

The structures of 3 were suggested by their EMM values and confirmed by their NMR spectra, as shown in Tables I and II. Moreover, the compounds 3p-1 to 3p-6 were also obtained by the reaction of 3-phenyl-3H-1,2,3-triazolo[4,5-d]pyrimidine-7-carbonitrile (4p) with the corresponding alkylmagnesium halides.⁹⁾

The reactions mentioned above provide facile methods for the synthesis of 3-substituted 7-alkyl-6,7-dihydro- (2) and 3-substituted 7-alkyl-3*H*-1,2,3-triazolo[4,5-*d*]pyrimidines (3).

Experimental¹⁰⁾

IR spectra were recorded on a Jasco IRA-1 grating infrared spectrophotometer. NMR spectra were measured at 60 Mc and 23° on a Hitachi R-24 high resolution NMR spectrometer using tetramethylsilane as an internal standard. EMM values were determined with a JEOL JMS-01SG-2 mass spectrometer combined with a JEC-6 spectrum computer. Samples were vaporized in a direct inlet system.

Reaction of 1m with G—A solution of G prepared from alkyl halides (2.4 mmol) and Mg (73 mg, 3.0 mmol) in ether (5.0 ml) was added to a solution of 1m (270 mg, 2.0 mmol) in ether (15.0 ml), and the mixture was refluxed for 3 hr. After cooling, aqueous $\mathrm{NH_4Cl-NH_3}$ (a solution of $\mathrm{NH_4Cl}$ (2.0 g) and 28% $\mathrm{NH_3}$ (1.0 ml) in $\mathrm{H_2O}$ (5.0 ml)) was added to the reaction mixture. The aqueous solution was extracted with CHCl₃. The CHCl₃ extract was dried over $\mathrm{Na_2SO_4}$ and chromatographed on a column of alumina, eluting with CHCl₃. The first eluate gave 2m. The yields of 2m are shown in Chart 1, while the melting points, EMM and IR data are listed in Table I, and NMR data in Table II.

Reaction of 1p with G——A solution of G prepared from alkyl halides (6.0 mmol) and Mg (182 mg, 7.5 mmol) in ether (10.0 ml) was added to a solution of 1p (985 mg, 5.0 mmol) in THF (10.0 ml), and the reaction mixture was refluxed for 3 hr. The isolation was carried out as described for the reaction of 1m with G. The first eluate gave 2p. The yields of 2p are shown in Chart 1, while the melting points, EMM and IR data are listed in Table I, and NMR data in Table II.

Oxidation of 2 with $\rm K_3Fe(CN)_6$ —A solution of $\rm K_3Fe(CN)_6$ (658 mg, 2.0 mmol) in $\rm H_2O$ (2.0 ml) was added to a mixture of 2 (0.7 mmol), $\rm K_2CO_3$ (276 mg), $\rm H_2O$ (2.0 ml), and benzene (5.0 ml), and the mixture was vigorously shaken for 2 hr at room temperature. The separated benzene layer was dried over $\rm Na_2SO_4$ and chromatographed on a column of alumina, eluting with benzene. The first eluate gave 3. The yields of 3 are shown in Chart 1, while the melting points and EMM values are listed in Table I, and NMR data in Table II.

Acknowledgement We are greatly indebted to the Ministry of Education, Science and Culture, Japan, for a Grant-in-Aid for Scientific Research (D) and a grant for Special Project Research in 1978. Our thanks are also due to Dr. M. Uchida of the central analysis room of this college for carrying out exact mass measurements.

⁷⁾ A. Albert, J. Chem. Soc. (B), 1966, 427.

⁸⁾ Part II: T. Higashino, T. Katori, and E. Hayashi, Chem. Pharm. Bull. (Tokyo), 27, 2431 (1979).

⁹⁾ T. Higashino, T. Katori, S. Yoshida, and E. Hayashi, Chem. Pharm. Bull. (Tokyo), 28, No.1 (1980) "in press."

¹⁰⁾ Melting points are uncorrected.