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ABSTRACT

The aza-Darzens reaction of the chiral enolate derived from (2S)-bromoacetyl camphor sultam (1) with certain C-3-substituted N-diphenylphosphinyl
imines gives mixtures of trans- and cis-aziridines. In some cases, only trans isomers are observed. A steric repulsion between the enolate
halogen atom and this C-3-substituent is invoked to rationalize these observations.

There has been much attention of late on the synthesis and
uses of chiral aziridines.1 We recently reported theaza-
Darzens reaction (ADZ) ofN-bromoacyl (2R)-camphorsul-
tam withN-diphenylphosphinylimines (“N-Dpp imines”) to
be a useful method for preparation of enantiopurecis-2-
carboxy aziridines.2 We here report our recent findings that
the presence of substituents in the C-3-position of certain
imines leads to altered diastereocontrol in the ADZ reaction
of bromoacyl (2S)-camphorsultam, in certain cases leading
exclusively totrans-aziridines.

N-Dpp benzaldimine reacted with the enolate derived from
(2S)-sultam (1) under the conditions outlined in Scheme 1
to give exclusively thecis-aziridine2 (R ) Ph) (3J ) 6.2,
typical of such aziridines3) in 71% yield, but the correspond-
ing imine derived from 2-chlorobenzaldehyde gave a mixture

of cis- and trans-aziridines3 in 68% combined yield, with
thetrans isomer dominating (cis:trans) 1:4; 3Jcis ) 6.1 Hz,
3Jtrans ) 2.8 Hz) (Scheme 1). The absolute configuration of
the cis-aziridinyl sultam was deduced by comparison with

(1) Davis, F. A.; McCoull, W. Tetrahedron Lett.1999, 40, 249.
Sodergren, M. J.; Alonso, D. A.; Bedekar, A. V.; Andersson, P. G.
Tetrahedron Lett.1997, 38, 6897. Osborn, H. M. I.; Sweeney, J.
Tetrahedron: Asymmetry1997, 8, 1693. Sodergren, M. J.; Alonso, D. A.;
Andersson, P. G.Tetrahedron: Asymmetry1997, 8, 3563.

(2) Cantrill, A. A.; Hall, L. D.; Jarvis, A. N.; Osborn, H. M. I.; Raphy,
J.; Sweeney, J. B.J. Chem. Soc., Chem. Commun. 1996, 2631.

Scheme 1. Variable Diastereocontrol in ADZ Reaction
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the 1H and 13C NMR obtained for authentic phenylaziri-
dine 2 (shown by X-ray analysis to be of 2R,2′R,3′R
configuration), while that of thetrans-aziridine was con-
firmed as (2′S,3′R) by X-ray analysis of a single crystal
(Figure 1).

This inversion of the diastereopreference previously seen
was even more pronounced in the reaction of theN-Dpp
imine derived from 2-bromobenzaldehyde: in this reaction
only a trans-aziridine was observed (67% yield,3J ) 2.6
Hz), an observation also made whenN-Dpp-2-iodobenzald-
imine was employed in the reaction. WhenN-Dpp-2-
fluorobenzaldimine was reacted under the same conditions,
lower stereoselectivity was observed, as might be expected,
with thecis:trans ratio being unity (3Jcis ) 6.2 Hz,3Jtrans )
2.8 Hz), although the yield of aziridine was good.

At first sight, these data seem to suggest that the bulk of
the 2-substituent is intimately related to the diastereoselec-
tivity of the reaction; to further probe the structural influ-
ences,N-Dpp-3-bromobenzaldimine was next subjected to
the reaction conditions. In this case, only acis-aziridine (3J
) 6.2 Hz) was isolated from the reaction. We then turned
our attention to nonhalogenated 2-substituted benzaldimines.
N-Dpp-2-methylbenzaldimine showed diastereoselectivity
similar to that of the analogous 2-fluoro imine, giving a 1:1
mixture ofcis- andtrans-aziridines (3Jcis ) 6.0 Hz,3Jtrans)
2.8 Hz), while the corresponding 2- and 4-methoxy imines
reacted to give only one diastereoisomer in each case (a
trans-aziridine (3J ) 3.1 Hz) from the 2-isomer and acis-
aziridine from the 4-isomer). A 2-nitro substituent favored
exclusive formation of acis-aziridine, perhaps due to lower
steric demand of this planar substituent. Once again, these
data do not point conclusively to a convincing rationalization
of the phenomena inducing this stereocontrol. These pre-
liminary data are collected in Table 1.

Interestingly, when theN-Dpp imines derived from ac-
rolein and 3,3-dimethylacrolein were used in the ADZ
reaction, a similar variable diastereoselectivity was ob-
served (Scheme 2). Thus, the unsubstituted vinyl imine

reacted in the “usual” fashion to give exclusivelycis
aziridine, whereas the 3,3-dimethyl analogue gavetrans-
configured aziridine.

From these data, one may make a tentative suggestion as
to the sequence of events responsible for the variation in

(3) All previously unreported compounds exhibited satisfactory physical
data. The following procedure is representative:N-bromoacetyl-(2S)-
bornane-10,2-sultam (336 mg, 1.0 mmol) was dissolved in 20 mL of dry
THF under a nitrogen atmosphere and cooled to-78 °C. Lithium
(hexamethyldisilyl)amide (1.1 mL, 1.0 M, 1.1 mmol) was added dropwise
and the resulting yellow solution stirred for approximately 30 min. After
this time,N-diphenylphosphinyl 2′-chlorobenzaldimine (340 mg, 1.0 mmol)
was added as a solution in THF (15 mL) to the reaction mixture. The reaction
mixture was then left stirring at-78 °C for approximately 3-4 h and
followed by TLC. After this time the reaction was quenched via addition
of a saturated ammonium chloride solution (20 mL). The aqueous layer
was then extracted with diethyl ether (3× 20 mL), the organic layers were
combined, washed with brine, dried (MgSO4), and filtered, and the solvent
was removed in vacuo to affordcis-andtrans-(2S,2′S,3′S)-N-[(1-diphenyl-
phosphinyl-3-(2-chlorophenyl)-2-aziridinyl)carbonyl]bornane-10,2-sultam

Figure 1. X-ray structure oftrans-aziridine3.

Table 1. Variation in Diastereoselectivity in ADZ ofN-Dpp
Imines

R yield/% cis:trans 3Jcis/trans/Hz

Ph (2) 71 100:0 6.2
2-F-C6H4 84 50:50 6.2/2.8
2-Cl-C6H4 (3) 68 20:80 6.1/2.8
2-Br-C6H4 67 0:100 2.6
2-I-C6H4 73 0:100 2.8
3-Br-C6H4 60 100:0 6.2
4-Br-C6H4 65 100:0 6.2
2-Me-C6H4 87 50:50 6.0/2.8
2-OMe-C6H4 65 0:100 3.1
4-OMe-C6H4 74 100:0 6.2
2-NO2-C6H4 72 100:0 5.8
4-NO2-C6H4 77 100:0 6.4
2-pyridyl 67 100:0 6.6

Scheme 2. Variable Diastereocontrol in ADZ Reaction of
Vinylimines
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diastereoselectivity in this ADZ reaction (Scheme 3). Thus,
although there is a paucity of empirical data concerning
transition-state preferences in the reaction of imines with
enolates,4 we suggest a closed transition state along Zim-
merman-Traxler guidelines.5 Since the aziridine C2 is
indubitably of (S)-absolute configuration, the reaction must
involve attack of thesi-face of theZ-enolate6 upon the imine.
Where there is no imine C-3 substituent, we suggest a
pseudoequatorial positioning of the imine C-1 substituent
(i.e., anE-configured imine) and attack upon thesi-face.
When thereis C-3-substitution, we postulate a repulsive
interaction between this group and the Br atom of the chiral
sultam enolate, leading to a preference for a transition state
in which the imine substituent adopts a pseudoaxial locus
(aZ-imine7), leading tore-face attack. This arrangement leads
inevitably to a (2′S,3′R)- trans-aziridine, as shown in Scheme
3. One may rationalize the lower selectivity shown fortrans-
aziridine in the reaction of 2-methylbenzaldimine (whose C-3
substituent should engender at least as much steric demand
as a bromo substituent8 [which leads to an exclusivelytrans-

configured aziridine]) by supposing that a Br-Br repulsion
(involving lone-pair:lone-pair interaction) is greater than a
Br-CH repulsion (involving a lone-pair:bonding-electron
repulsion). Theprecisedetails of the mechanism responsible
for these phenomena are at present under investigation in
our laboratory.
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3 as a very pale yellow solid. From1H NMR, the mixture was adjudged to
be approximately a 20:80 mixture ofcis:trans isomers. After flash
chromatography (light petroleum ether:ethyl acetate (1:9))cis-3 was obtained
as a colorless solid (81 mg, 0.13 mmol, 13%);Rf 0.63 (EtOAc); [R]20

D )
+28.7 (c ) 1, CH2Cl2); νmax(CCl4)/cm-1 3057, 2964, 1703, 1440, 1341,
1128, 1266, 1169, 745, 705, 644;δH (400 MHz, CDCl3) 0.78-0.83 (6H,
m), 1.12-1.20 and 1.72-1.97 (7H, m), 3.22 and 3.30 (2H, 2× d, J )
13.9 Hz), 3.57-3.60 (1H, m), 4.11-4.50 (2H, 2× dd, J ) 6.1 Hz, 15.9
Hz), 7.10-7.57 and 7.85-8.03 (14H, m);δC (100 MHz, CDCl3) 19.72,
20.55, 26.29, 32.49, 38.12, 40.69, 42.31 (2× CH, J ) 5.6 Hz), 44.56,
47.70, 48.95, 52.46, 64.58, 126.01, 128.44, 128.57, 128.68, 129.07, 129.18,
129.58, 130.62, 130.82, 131.55, 131.68, 131.74, 131.77, 131.83, 131.94,
132.10, 132.27, 134.61, 163.74;m/z (CI) 595 ([MH]+, 66), 531 (60), 419
(100), 313 (43), 201 (91), 77 (32) (found: [MH]+, 595.1594, C31H33ClN2O4-
PS requires [MH]+, 595.1588). Similarly,trans-3 was obtained as a colorless
solid (325 mg, 0.55 mmol, 55%);Rf 0.56 (EtOAc); [R]20

D ) +59.4 (c )
1, CH2Cl2); νmax(CCl4)/cm-1 3056, 2985, 1705, 1440, 1338, 1168, 1266,
1126, 738, 706, 623 (Ar);δH (400 MHz, CDCl3) 0.75 (3H, s), 0.80 (3H, s),
1.01-1.29 and 1.65-1.89 (7H, m), 3.23 (1H, d,J ) 13.6 Hz), 3.28 (1H,
d, J ) 13.6 Hz), 3.72 (1H, m), 4.16 (1H, dd,J ) 2.8 Hz, 13.3 Hz), 4.30
(1H, dd,J ) 2.8 Hz, 13.3 Hz), 7.03-7.10 and 7.19-7.34 (10H, m), 7.63-
7.67 and 7.79-7.83 (4H, m);δC (100 MHz, CDCl3) 19.65, 20.64, 26.29,
32.52, 37.75, 41.27 (aziridine CH, d,J ) 5.5 Hz), 43.96 (aziridine CH, d,
J ) 5.5 Hz), 44.37, 47.59, 48.76, 52.71, 65.11, 126.52, 127.95, 128.08,
128.12, 128.24, 128.41, 128.94, 129.41, 131.19, 131.55, 131.65, 132.45,
133.00, 134.32, 135.49, 164.92 (CO, d,J ) 5.6 Hz);m/z (CI) 594 ([M]+,
19), 559 (49), 219 (68), 201 (100), 77 (27) (found: [M]+, 594.1559, C31H32-
ClN2O4PS requires [M]+, 594.1508).

(4) Asymmetricaza-Darzens and Darzens-like reactions: Gennari, C.;
Pain, G.Tetrahedron Lett.1996, 37, 3747. Fujisawa, T.; Hayakawa, R.;
Shimizu, M.Tetrahedron Lett.1992, 33, 7903. Davis, F. A.; Zhou P.; Reddy,
G. V. J. Org. Chem.1994, 59, 3243. Davis, F. A.; Zhou, P.; Liang, C. H.;
Reddy, R. E.Tetrahedron: Asymmetry1995, 6, 1511. Florio, S.; Troisi L.;
Capriati, V.J. Org. Chem.1995, 60, 2279.

(5) Zimmerman, H. E.J. Am. Chem. Soc.1957, 79, 1920.
(6) Calculations (UFF, Rapper, A. K.; Casewit, C. J.; Colwell, K. S.;

Goddard, W. A., III; Skiff, W. M.J. Am. Chem. Soc. 1992, 114, 10024)
show theZ-enolate to be more stable than theE-enolate by 4.1 kcal/mol.

(7) Although all imines used were of (E)-configuration (3JP-H ) 32 Hz)
in the pure state, (E)-(Z)-isomerism of imines under the influence of metal
ions is well-known; see, for example: Alshalaan, A. M.; Alshowiman, S.
S.; Alnajjar, I. M.Inorg. Chim. Acta1986, 121, 127-129. For a discussion
of the factors underlying (E)/(Z)-preferences in imines, see: Bjørgo, J.;
Boyd, D. R.; Watson, C. G.; Jennings, W. B.J. Chem. Soc., Perkin Trans.
1 1974, 757.

(8) Streitwieser, A.; Heathcock, C. H.; Kosower, E. M.Introduction to
Organic Chemistry; Macmillian Publishing Company: New York, 1992.

Scheme 3. Mechanistic Possibilities in ADZ Reaction of
C-3-SubstitutedN-Dpp Imines
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