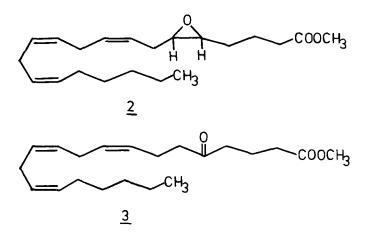
Tetrahedron Letters,Vol.24,No.17,pp 1755-1758,1983 0040-4039/83/171755-04\$03.00/0 Printed in Great Britain ©1983 Pergamon Press Ltd.

FORMATION AND STRUCTURE DETERMINATION OF 5,6-EPOXY-8,11,14-Z-EICOSATRIENOIC ACID AND 5-0X0-8,11,14-Z-EICOSATRIENOIC ACID

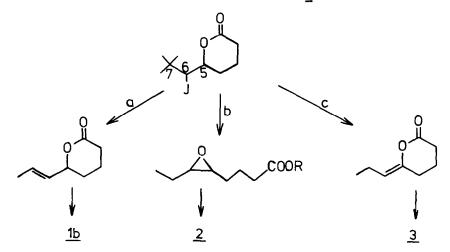
Bernd Spur⁺, Attilio Crea, Wilfried Peters

Institut für Organische Chemie I und Anorganische Chemie I der Universität Düsseldorf, Universitätsstr. 1, D-4000 Düsseldorf, West Germany

Wolfgang König


Lehrstuhl für Medizinische Mikrobiologie und Immunologie, Ruhr-Universität Bochum, Postfach, D-4630 Bochum, West Germany

<u>Abstract</u>: The formation of 5,6-epoxy-8,11,14-Z-eicosatrienoic acid and 5-oxo-8,11,14-Z-eicosatrienoic acid as by-products in the synthesis of 5-hydroxy-6-E-8,11,14-Z-eicosatetraenoic acid is described.


5-Hydroxy-6-E-8,11,14-Z-eicosatetraenoic acid (5-HETE) <u>1a</u> is an important biological mediator which is strongly chemotactic for human eosinophils and neutrophils comparable in magnitude to the peptide factor C5a derived from the fifth component of human complement $^{1-3}$. OH

The methyl ester <u>1b</u> was prepared essentially as described by Corey ^{4,5)}. However, we modified his work up procedure by using HPLC throughout ⁶⁾. HPLCanalysis of the crude reaction mixture showed the presence of <u>1b</u> (90%) as well as the intact 5-HETE-6-lactone (8%) and one or two unknown products (1%). GC-MS produced an M⁺ peak of 334 ($C_{21}H_{34}O_{3}$) ⁷⁾ indicating isomeric <u>1b</u> or LTA₃ methyl ester ⁸⁾. The 250 MHz ¹H NMR spectrum, however, showed the presence of two methoxy groups (ratio 70:30), a fact incompatible with the assumption of one unknown product. On further investigation we found that indeed two products <u>2</u>, <u>3</u> could be isolated by HPLC using hexane/ethyl acetate (95:5) a solvent system known to be suitable for the separation of LTA₄ isomers ⁹. On the basis of the ¹H- (Table 1) and ¹³C-NMR (Table 2) data we suggest the following structures of $\underline{2}$ and $\underline{3}$.

The assignment of 13 C- and 1 H- signals is straightforward and follows known additivity rules 10). The relatively high value of 3 J_{5,6}, the downfield shift of H-5,6 and the marked upfield shift of C-4 (see Table 1,2) confirm the cis - stereochemistry at C-5,6 in 2 ${}^{11-13}$). Only little is known about the magnitude of the electric field effect due to the carbonyl- or oxiranegroup and its influence on a sequence of non conjugated double bonds. Nevertheless we have made a tentative assignment based on the spectral analysis of related or analogous compounds which is almost certainly correct ${}^{11-13}$. The formation of <u>1b</u>, <u>2</u>, <u>3</u> can be explained by three different ways <u>a - c</u> of HI-elimination from the intermediate iodolactone 4 5 .

Table 1:	¹ h NMR Da	ata of <u>2</u> and <u>3</u> ,	Table 2:	¹³ c nmr	Data of <u>2</u> and <u>3</u> ,
	\$ ppm (250 MHz)		6 ppm (50.3 MHz)		
H - Assignmer	nt <u>2</u>	3	C-Assignme	ent <u>2</u>	3
			C- 1	173.65	173.69
H - 2	2.41	2.35m ⁺⁾	C - 2	33.65	33.12
H - 3	1.59	1.90	C- 3	22.10	18,94
H - 4	1 . 84m	2•48m +)	C - 4	26.23	42 . 56 +)
H - 5	2.95		C - 5	56.57	+) _{209•} 42
H - 6	2.95	2.48m +)	C - 6	56.24	+) 41.70 +)
H - 7	2.41	2.35 +)	C- 7	26.23	21.71
H 8	5 . 48m	5 . 36m	C - 8	124.23	129,21
H - 9	5.48m	5,36m	C - 9	130.70	127.87
H -1 0	2.82 +)	2.81 +)	C -1 0	25.93	25.66
H - 11	5 . 36m	5.36m	C - 11	127.50	128.24
H -1 2	5 . 36m	5.36m	C -1 2	128.40	128,72
H - 13	2 . 84 +)	2.83 +)	C-13	25.69	25,66
H - 14	5 . 36m	5 . 36m	C-14	127.50	127.59
H -1 5	5 . 36m	5 . 36m	C-15	130.62	130.57
H 16	2.06	2.06	C -1 6	27.26	27.28
H -1 7	1 . 31m	1 . 30m	C-17	29.33	29.37
H -1 8	1 . 31m	1,30m	C - 18	31.54	31.56
H -1 9	1.31m	1.30m	C - 19	22,58	22.61
H - 20	0.90	0.90	C - 20	14.06	14.08
осн _з	3.70	3.69	осн _з	51.55	51.54

m: multiplet, +: ambiguity remains; ${}^{3}J_{5,6} = 3.5$ Hz; H-7, ${}^{2}J_{a,b} = 14.5$ Hz.

Our results demonstrate that NMR spectroscopy is a valuable method for rapid determination of structures of known or unknown leukotriene isomers and other lipoxygenase products.

Compound 2 and 3 as well as the free acids show only a weak histamine release and no chemotaxis for human granulocytes.

ACKNOWLEDGMENT:

The authors would like to extend their thanks to Dr. W.-D.Busse and Dr. M. Mardin, Bayer - Pharma AG Wuppertal for high-field NMR spectra as well as Prof. J. Mulzer for helpful discussions during the preparation of this manuscript.

REFERENCES:

- 1)E.J. Goetzl, A.R. Brash, A.I. Tauber, J.A. Oates and W.C. Hubbard, Immunology, <u>39</u>, 491 (1980).
- 2)E.J. Goetzl, New England J. Med., 303, 822 (1980).
- 3)W. König, K.D. Bremm, H.J. Brom, U. Pison, K. Theobald, A. Bohn,

P. Borgeat, B. Spur, A. Crea, G. Falsone, Monographs in Allergy in press.

- 4)E.J. Corey, J.O. Albright, A.E. Barton, S. Hashimoto, <u>J. Am. Chem. Soc</u>. <u>102</u>, 1435 (1980).
- 5)E.J. Corey and S. Hashimoto, Tetrahedron Lett. 299 (1981).
- 6)HPLC with a Waters Prep 500 was used throughout.
- 7)GC-MS was kindly obtained from Prof. G. Galli, Institute of Pharmacology and Pharmacognosy University of Milan, Italy.
- 8)B.Spur, G. Falsone, A. Crea, W. Peters und W. König, <u>Arch. Pharm</u>., in press
- 9)S.W. Mckay, D.N.B. Mallen, P.R. Shrubsall, J.M. Smith, S.R. Baker, W.B. Jamieson, W.J. Ross, S.E. Morgan, D.M. Rackham, <u>J. Chromatogr. 214</u>, 249 (1981).
- 10)E. Breitmeier, W. Voelter," ¹³C-NMR Spectroscopy" 2nd ed., Verlag Chemie Weinheim - New York, 1978.
- 11)H. Suhr, "Anwendung der kernmagnetischen Resonanz in der organischen Chemie ", Springer - Verlag, Berlin 1965.
- 12)L. Heresi, J.B. Nogy, A. Krief, E. Derouane, Org.Magn.Reson. 10,14(1977).
- 13)J. Bus, I. Sies and M.S.F. Lie Ken Jie, <u>Chem. Phys. Lipids</u>. <u>17</u>, 501 (1976) <u>18</u>, 130 (1977).

(Received in Germany 17 December 1982)