Modulation Of T-Facial Selectivities In Nucleophilic Additions to 7-Norbornenones

Goverdhan Mehta*a,b and Faiz Ahmed Khana

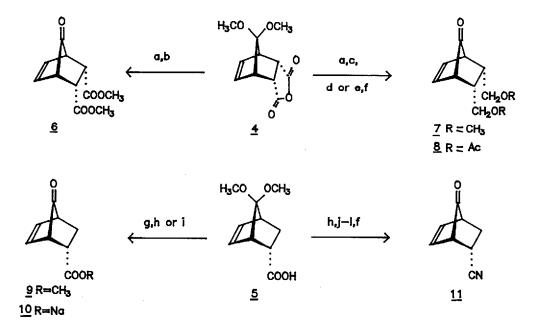

a School of Chemistry, University of Hyderabad, Hyderabad 500 134.

b. Jawaharlal Nehru Centre for Advanced Scientific Research,

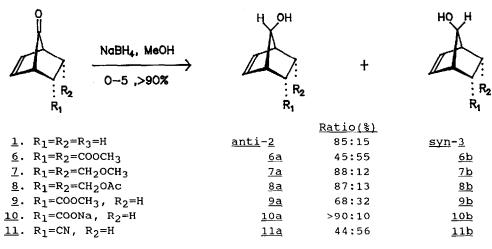
Indian Institute of Science Campus, Bangalore 560 012, India.

Key Words: 7-Norbornenone, NaBH₄ reduction, \mathbb{T} -face-selectivity. **Abstract:** The pronounced <u>syn</u>-face selectivity exhibited by 7-norbornenone in hydride reduction is dramatically altered (reversed) by the remote electron withdrawing substituents at the C_2, C_3 -<u>endo</u>-position.

7-Norbornenone 1 is an intrinsically interesting substrate that has served as an important stereoelectronic probe in diverse organic reactions. In 1966, Brown and Muzzio¹ made the observation that sodium borohydride reduction of 1 proceeds predominantly from the double bond side to furnish 85 : 15 mixture of <u>anti-2</u> (R=H) and <u>syn-3</u> alcohols, respectively. Subsequently, Erman^{2a} as well as Warkentin^{2b,C} reported that CH₃Li and CH₃MgBr also exhibit marked preference for the syn-face addition to furnish 2 (R=CH₃) as the major product. However, Warkentin^{2c} noted that in the case of vinyllithium and phenyllithium addition to 1, there was reversal in faceselectivity and 3 (R=vinyl or phenyl) was the major product. More recently, Gassman and O'Reilly³ observed that C_2F_5Li and C_2F_5MgBr added to <u>1</u> almost exclusively from the <u>anti</u>-face to furnish <u>3</u> $(R=C_2F_5)$. These intriguing results on the face-selectivity in nucleophilic additions to 1 have been interpreted in terms of one or more of the following factors: 1. preference for the approach from the sterically more accessible <u>syn</u>-face; $1, 2^{b,c}$ 2. steric bulk of the reagent; 3. polar factors e.g., ion-pair formation through double bond participation at the C_7 -electrophilic centre;^{2,4} and 4. nucleophilicity of the attacking reagent.³ While the above studies emphasize the reagent mediated alteration of face-selectivity in 1, complementary studies aimed at probing the effect of substrate modification on the face-selectivity have not been forthcoming.⁵ In this letter, we disclose that distal electronic modifications in $\underline{1}$ through <u>endo</u>-substituents at C_2 and C_3 , without accompanying perturbation in the steric environment, can cause alteration (reversal) in the π facial selectivity of nucleophilic additions to the C7-carbonyl of 1.

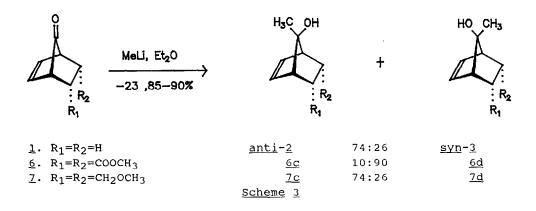


3065


Six <u>endo</u>-substituted 7-norbornenones <u>6-11</u> were prepared through unambiguous but unexceptional routes from readily available 4^5 and 5.6 Scheme 1.7 In 6-11, the dangling endo-substituents differ in

 $5,^{6}$ Scheme 1.⁷ In <u>6-11</u>, the dangling <u>endo</u>-substituents differ in their inductive contributions (e.g., +I in <u>10</u> and -I in <u>11</u>) but are sterically 'sterile', being on the 'blind-side' of the C₇-carbonyl and below the C₂, C₃, C₅, C₆ plane. Results of sodium borohydride reduction of <u>6-11</u> are summarised in Scheme 2.⁷⁻⁹ In each case, the diastereometric <u>anti</u>-alcohols <u>6a-11a</u> and <u>syn</u>-alcohols <u>6b-11b</u> were separated and the stereochemical assignments are based on (a) the relative deshielding (~0.1-0.15 ppm) of the C₅, C₆ olefinic protons in <u>syn</u>-alcohols (<u>6b-11b</u>) compared to <u>anti</u>-alcohols (<u>6a-11a</u>),^{2b,C} (b) considerable deshielding (~0.3 ppm) of C₂,C₃-<u>exo</u>-protons in <u>anti</u>-(<u>6a-11a</u>) compared to <u>syn-(6b-11b</u>),⁵ and (c) catalytic hydrogenation of <u>6a,b-11a,b</u> to the known compounds prepared and characterised by us.⁵

A more notable result was obtained in the addition of methyllithium to $\underline{6}$, which furnished $\underline{6c}$ and $\underline{6d}$ in a ratio of 10 : 90, respectively. The methoxymethyl substituted $\underline{7}$ on the other hand displayed practically no change compared to $\underline{1}$, Scheme 3.



<u>Reagents</u>: (a) CH_3OH/H^+ , Δ , 86%; (b) THF, 5% $aq.H_2SO_4$, Δ , 75%; (c) LAH, ether, 78%; (d) NaH, THF, CH_3I , 87%; (e) Ac_2O , DMAP, CH_2Cl_2 , r.t., 95%; (f) Amberlyst-15, acetone- H_2O , Δ , 60-90%; (g) THF, 20% aq.HCl, Δ , 61%; (h) CH_2N_2 , ether, 0-5°C, 70%; (i) CH_3OH , aq.NaOH, quant.; (j) DIBAL-H, CH_2Cl_2 , -78°C, 65%; (k) $NH_2OH.HCl$, py., CH_2Cl_2 , r.t., 90%; (l) TsCl, py., CH_2Cl_2 , r.t., 65%.

Scheme 2

The findings depicted in Scheme 2 and 3 demonstrate considerable variation in the face-selectivity as a function of the C2,C3-endosubstituent(s). The more significant cases being of diester 6 and cyano 11, where reversal is observed compared to 1 and the preferred addition is from the anti-face. This selectivity is much more pronounced in the case of methyllithium addition, wherein the synalcohol 6d is preponderant, Scheme3. Our results firmly indicate that electron withdrawing groups e.g., -CN, -COOCH₃ etc. at C₂, C₃ are particularly effective in directing the nucleophiles on the anti-face of the 7-norbornenones. While these substituent effects on the face selectivity can be accommodated in terms of the Cieplak hyperconjugation model^{5,10} and/or the electrostatic effects,¹¹ the striking feature is that the endo-EWG's direct addition from the sterically less approachable anti-face.¹² Notably, the long-range electronic effects of the distal C2,C3-endo-substituents supersede the ground state geometrical features present in 7-norbornenones which would favour

the syn-approach. Further studies on the response of new derivatives of 1 to diverse nucleophiles is currently under active investigation. 9,13

References and Notes:

- 1. H.C. Brown and J. Muzzio, J. Am. Chem. Soc., 1966, <u>88</u>, 2811.
- (a) W.F. Erman, J. Org. Chem., 1967, <u>32</u>, 765. (b) J. Warkentin, Can. J. Chem., 1970, <u>48</u>, 1391. (c) F.R.S. Clark and J. Warkentin, Can. J. Chem., 1971, <u>49</u>, 2223.
- 3. P.G. Gassman and N. O'Reilly, J. Org. Chem., 1987, <u>52</u>, 2481.
- M.H. Lin, J.E. Silver and W.J. le Noble, J. Org. Chem., 1988, 53, 5155.
- G. Mehta and F.A. Khan, J. Am. Chem. Soc., 1990, <u>112</u>, 6140 and F.A. Khan unpublished results.
- 6. E. Gossinger and R. Muller, Tetrahedron, 1989, 45, 1377.
- 7. All new compounds reported here were characterised on the basis of their spectral (IR, ¹H and ¹³C NMR) and analytical data.
- 8. The prefix <u>syn</u>- and <u>anti</u>- are with respect to the norbornene double bond. The diastereomer ratios were obtained by ¹H NMR integration and by GLC analysis (error ~ 5%) of the reaction mixture. ¹³C NMR (CDCl₃, 25.0 MHz) data for some of the diastereomeric alcohols is as follows:-
- Response of <u>6</u> and <u>7</u> to other nucleophiles, particularly organo lithium reagents is being investigated in collaboration with Prof. W.J. le Noble, S.U.N.Y., Stony Brook.
- 10. (a) A.S. Cieplak, B.D. Tait and C.R. Johnson, J. Am. Chem. Soc., 1989, <u>111</u>, 8447 and references cited therein. (b) C.K. Cheung, L.T. Tseng, M.H. Lin S. Srivastava and W.J. le Noble, J. Am. Chem. Soc., 1986, <u>108</u>, 1598 and later papers.
- 11. Y-D. Wu, J.A. Tucker and K.N. Houk, J. Am. Chem. Soc., 1991, <u>113</u>, 5018; S.S. Wong and M.N. Paddon-Row, Aust. J. Chem., 1991, <u>44</u>, 765.
- 12. X-ray crystal structure determination of <u>6</u> has revealed that carbonyl bearing $C_1-C_7-C_4$ bridge is tilted away from the double bond, thus opening up the <u>syn</u>-face. See, V.A. Kumar, K. Venkatesan, B. Ganguly, J. Chandrasekhar, F.A. Khan and G. Mehta, accompanying communication.
- 13. We thank the CSIR for the financial support for this project.