

\$0040-4039(96)00124-4

Synthesis of 5-Thio-L-fucose-containing Blood Group Antigens H-type 2 and Lewis X (Le^x)

Masayuki Izumia, Osamu Tsurutaa, Hironobu Hashimotoa* and Shin Yazawab

^aDepartment of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan, ^bDepartment of Legal Medicine, Gunma University School of Medicine, 3-39-22, Showa-cho, Maebashi, Gunma 371, Japan

Abstract: Two blood group antigens, H-type 2 and Lewis X trisaccharides containing 5thio-L-fucose instead of L-fucose, were synthesized. 2-Azido-2-deoxy-lactose derivative 11 was used as the common disaccharide intermediate. 5-Thio-L-fucosylation of the 2'-OH and 3-OH groups of 1,6-anhydro-2-azido-2-deoxy-lactose derivative by a trichloroacetimidate method gave α -linked trisaccharides stereoselectively.

Interest in cell-surface oligosaccharides is growing because of the important roles these compounds play in a number of biological phenomena such as cell adhesion.¹ Since 5-thio-L-fucose, which contains a sulfur atom instead of the ring oxygen, was found to be a potent competitive inhibitor of bovine α -L-fucosidases,² we have been interested in various 5-thio-L-fucose-containing oligosaccharide mimics. Glycosylation with 2-*O*-acetyl-5thioaldopyranosyl trichloroacetimidates gave axial glycoside^{3,4} predominantly. Therefore, 5-thio- α -L-fucoside can be easily constructed. We synthesized⁴ several disaccharides having 5-thio- α -L-fucosyl residue at the nonreducing end using the peracetylated 5-thio-L-fucopyranosyl trichloroacetimidate. Now we describe here synthesis of two 5-thio-L-fucose-containing blood group antigens related to H-type 2 and Lewis X (Le^x).

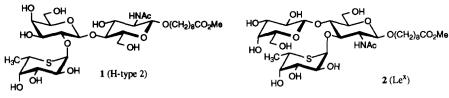
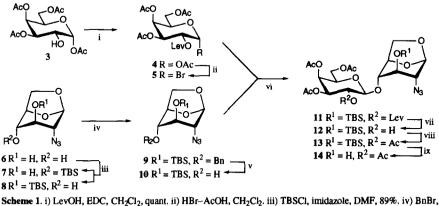
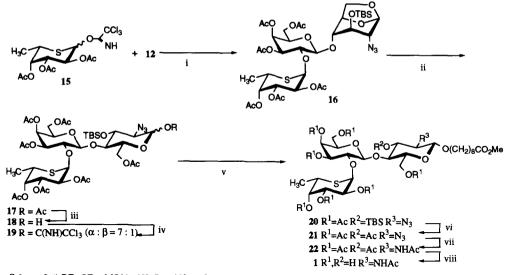
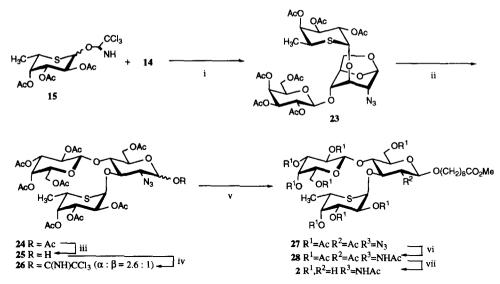



Figure 1. Two target neotrisaccharides

Our designed common intermediate of the *N*-acetyllactosamine moiety is 2-azido-2-deoxylactose derivative 11, whose 3-OH and 2'-OH groups are protected with *tert*-butyldimethylsilyl (TBS) and levulinoyl (Lev) groups, respectively. These two protective groups can be removed in the presence of an acetyl group, and the levulinoyl group has the ability to form a β -galactosidic bond by anchimeric assistance. 1,3,4,6-Tetra-*O*-acetyl- α -D-galactopyranose 3 was levulinoylated⁵ with levulinic acid and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and then converted into glycosyl bromide 5 by treatment with HBr-acetic acid. The 2-azido-2-deoxy-glucosyl acceptor was synthesized from 1,6-anhydro-2-azido-2-deoxy- β -D-glucopyranose 6 derived from D-glucal.⁶ Compound 6 was treated with TBSCl and imidazole to give 4-*O*-TBS derivative 7 and 3-*O*-TBS derivative 8 in 9:1 ratio in 89% yield. These two isomers could be separated by


column chromatography on silica gel, but benzylation of the mixture with benzyl bromide and BaO, Ba(OH)₂ gave 1,6-anhydro-2-azido-4-*O*-benzyl-3-*O*-tert-butyldimethylsilyl-2-deoxy- β -D-glucopyranose 9⁷ as the sole product in 92% yield. Highly efficient debenzylation of 9 with TiCl₄⁸ gave an acceptor 10 in 91% yield. Glycosylation of 10 with galactosyl bromide 5 in the presence of AgClO₄ and Ag₂CO₃ gave the desired disaccharide 11 in 60% yield along with a byproduct of orthoester in 33% yield. It is confirmed by ¹H NMR data of 11 (J _{1'.2'} 7.9 Hz) that the orientation of the newly formed glycosidic bond is β .


Scheme 1. i) LevOH, EDC, CH₂Cl₂, quant. ii) HBr-AcOH, CH₂Cl₂. iii) TBSCl, imidazole, DMF, 89%. iv) BnBr, Ba(OH)₂•8H₂O, BaO, DMF, 92%. v) TiCl₄ CH₂Cl₂, 91%. vi) AgClO₄, Ag₂CO₃, CH₂Cl₂, 60%. vii) H₂NNH₂•AcOH, EtOH, 88%. viii) Ac₂O, Pyridine, 93%. ix) TBAF, THF, quant.

The levulinoyl group of 11 was removed with H_2NNH_2 *AcOH to give 2'-OH derivative 12 (88%), which was used for the synthesis of the H-type 2 analog 1. Furthermore, 12 was converted to 3-OH derivative 14 via acetylation and removal of the TBS group with tetra-n-butylammonium fluoride (TBAF) and used for the synthesis of the Le^x analog 2. 5-Thio-L-fucosylation was carried out as communicated previously⁴ with the 2,3,4-tri-*O*-acetyl-5-thio-L-fucopyranosyl trichloroacetimidate 15 in the presence of BF₃•OEt₂ as a catalyst at -20°C. Reaction of 15 with the 2'-OH derivative 12 gave exclusively 5-thio- α -L-fucosyl trisaccharide 16⁹ in 75% yield. The 1,6-anhydro ring of the trisaccharide 16 was acetolysed with Ac₂O and TFA to give 17 quantitatively. Then the anomeric acetyl group was removed and converted into trichloroacetimidate 18 with trichloroacetonitrile and DBU. The α -imidate was separated to construct β -glycoside. Glycosylation of 8-methoxycarbonyloctanol with 18 α in the presence of BF₃•OEt₂ gave the spacer-linked trisaccharide 20 in 91% yield. Its TBS group was removed with TBAF, and acetylated, then the azido group was reduced with H₂S and *N*-acetylated. Finally, de-*O*-acetylation with sodium methoxide gave the target H-type 2 trisaccharide 1¹⁰ in 37% yield from 20.

5-Thio-L-fucosylation of the 3-OH derivative 14 under the same conditions as for 12 gave 5-thio- α -L-fucoside 23¹¹ in 54% yield. The trisaccharide 23 was converted into the glycosyl imidate 26 by the same procedure as for conversion of 16 into 18. Glycosidation with 8-methoxycarbonyloctanol with 26 α in the presence of BF₃•OEt₂ gave the spacer-linked trisaccharide 27 in 64% yield. Then the azido group was reduced with H₂S and *N*-acetylated and finally de-*O*-acetylated with sodium methoxide to give the target Le^x trisaccharide 2¹² in 76% yield from the protected trisaccharide 27.

Scheme 2. i) BF₃•OEt₂, MS4A, CH₂Cl₂, -20°C, 75%. ii) Ac₂O, TFA, quant. iii) H₂NNH₂•AcOH, DMF, 86%. iv) CCl₃CN, DBU, CH₂Cl₂, 93%. v) HO(CH₂)₈CO₂Me, BF₃•OEt₂, MS4A, CH₂Cl₂, -20°C, 91%. vi) TBAF, THF then Ac₂O, pyridine, 69%. vii) H₂S, pyridine, H₂O then Ac₂O, pyridine, 95%. viii) NaOMe, MeOH, 62%

Scheme 3. i) BF₃+OEt₂, MS4A, CH₂Cl₂, -20°C, 54%. ii) Ac₂O, TFA, 94%. iii) H₂NNH₂+AcOH, DMF, 83%. iv) CCl₃CN, DBU, CH₂Cl₂, 76%. v) HO(CH₂)₈CO₂Me, BF₃+OEt₂, MS4A, CH₂Cl₂, -20°C, 64%. vi) H₂S, pyridine, H₂O then Ac₂O, pyridine, 97%. vii) NaOMe, MeOH, 78%

The H-type 2 trisaccharide analog 1 showed strong inhibitory activity¹³ against hemagglutination reactions with *Ulex europaeus* lectin I (UEA-I) and the H-type 2 trisaccharide-specific monoclonal antibody (anti-H MoAb). These biological activities of 5-thio-L-fucose-containing trisaccharides will be reported in detail elsewhere.

Acknowledgments: This work was supported in part by a Grant-in-aid (No. 06453212) for Scientific Research on Priority Area from Japanese Ministry of Education, Science, Sports and Culture.

References and Notes

- 1. Fukuda, M. Bioorg. Med. Chem., 1995, 3, 207-215; and references therein.
- 2. Hashimoto, H.; Fujimori, T.; Yuasa, H. J. Carbohydr. Chem., 1990, 9, 683-694.
- 3. Mehta, S.; Pinto, B. M. Tetrahedron Lett., 1992, 33, 767-770.
- 4. Hashimoto, H.; Izumi, M. Tetrahedron Lett., 1993, 34, 4949-4952.
- 5. Koeners, H. J.; Verhoeven, J.; van Boom, J. H. Tetrahedron Lett., 1980, 21, 381-382.
- 6. Tailler, D.; Jacquinet, J.-C.; Noirot, A.-M.; Beau, J.-M. J. Chem. Soc. Perkin Trans. 1, 1992, 3163-3164.
- 7. van Boeckel, C. A. A.; van Aelst, S. F.; Beetz, T. Recl. Trav. Chim. Pays-Bas, 1983, 102, 415-416.
- 8. Hori, H.; Nishida, Y.; Ohrui, H.; Meguro, H. J. Org. Chem., 1989, 54, 1346-1353.
- 9. ¹H NMR data for 16 (270 MHz, CDCl₃) δ 5.45–5.41 (m, 3 H, H-1, 3", 4"), 5.32 (bd, 1 H, H-4'), 5.26 (dd, 1 H, H-2"), 5.21 (d, 1 H, J _{1",2"} 2.6 Hz, H-1"), 5.05 (dd, 1 H, J _{3',4'} 3.3 Hz, H-3'), 4.67 (bd, 1 H, J _{5,6b} 6.3 Hz, H-5), 4.57 (d, 1 H, J _{1',2} 7.9 Hz, H-1'), 4.29 (dd, 1 H, J _{2',3'} 9.9 Hz, H-2'), 4.16–4.12 (m, 3 H, H-6a, 6'a, 6'b), 4.10–4.00 (m, 2 H, H-3, 5"), 3.90 (dt, 1 H, J _{5,6'a} = J 5.6'b 6.6 Hz, H-5'), 3.81 (t, 1 H, J _{6a,6b} 6.9 Hz, H-6b), 3.54 (s, 1 H, H-4), 3.18 (s, 1 H, H-2), 2.171, 2.166, 2.04, 2.00, 1.99, 1.98 (each s, 3 H × 6, Ac × 6), 1.14 (d, 1 H, J _{5",6"} 6.9 Hz, H-6"), 0.91 (s, 9 H, tBu), 0.12 (s, 6 H, SiMe₂).
- 10. ¹H NMR data for 1 (400 MHz, D₂O) δ 5.21 (d, 1 H, $J_{1",2"}$ 3.2 Hz, H-1"), 4.57 (d, 1 H, $J_{1',2'}$ 6.4 Hz, H-1'), 4.55 (d, 1 H, $J_{1,2}$ 8.4 Hz, H-1), 4.10 (bs, 1 H, H-4"), 4.06 (m, 1 H, H-6a), 4.05 (dd, 1 H, $J_{2",3"}$ 10.2 Hz, H-2"), 4.00–3.92 (m, 4 H, H-2', 3', 4', CH₂O), 3.87 (dd, 1 H, $J_{5,6b}$ 6.3, $J_{6a,6b}$ 12.1 Hz, H-6b), 3.84 (dd, 1 H, $J_{3",4"}$ 2.8 Hz, H-3"), 3.90–3.73 (m, 5 H, H-2, 4, 5', 6'a, 6'b), 3.74, 3.40 (each s, 3 H, MeO), 3.71 (dd, 1 H, $J_{2,3}$ 8.7, $J_{3,4}$ 10.2 Hz, H-3), 3.67–3.60 (m, 1 H, CH₂O), 3.56–3.53 (m, 1 H, H-5), 3.46 (q, 1 H, $J_{5",6"}$ 7.2 Hz, H-5"), 2.44, 2.22 (each t, 2 H, J 7.3 Hz, CH₂CO), 2.09 (s, 3 H, Ac), 1.67–1.35, (m, 12 H, (CH₂)₆), 1.27, (d, 1 H, H-6").
- 11. ¹H NMR data for **23** (270 MHz, CDCl₃) δ 5.50 (bs, 1 H, H-4"), 5.45 (s, 1 H, H-1), 5.41 (bd, 1 H, J _{3',4'} 3.6 Hz, H-4'), 5.30 (m, 2 H, H-2", 3"), 5.23 (dd, 1 H, J _{2',3'} 10.5 Hz, H-2'), 5.05 (dd, 1 H, H-3'), 5.01 (bs, 1 H, H-1"), 4.72 (d, 1 H, J _{1',2'} 7.9 Hz, H-1'), 4.61 (bd, 1 H, J _{5,6b} 5.6 Hz, H-5), 4.20–4.16 (m, 3 H, H-3, 6'a, 6'b), 4.08, (d, 1 H, J _{6a,6b} 6.9 Hz, H-6a), 3.94 (dt, 1 H, J _{5',6'a} = J _{5',6'b} 6.6 Hz, H-5'), 3.82 (bs, 1 H, H-4'), 3.77 (dd, 1 H, H-6b), 3.54 (q, 1 H, J _{5',6'} 7.3 Hz, H-5''), 3.05 (s, 1 H, H-2), 2.18, 2.07, 2.00 (each s, 6 H, 9 H, 6 H, Ac × 7), 1.19 (d, 3 H, H-6'').
- 12. ¹H NMR data for **2** (400 MHz, D₂O) δ 4.95 (d, 1 H, $J_{1",2"}$ 2.9 Hz, H-1"), 4.58 (d, 1 H, $J_{1,2}$ 8.7 Hz, H-1), 4.47 (d, 1 H, $J_{1',2'}$ 7.9 Hz, H-1'), 4.23 (t, 1 H, $J_{2,3} = J_{3,4}$ 9.5 Hz, H-3), 4.05 (bs, 1 H, H-4"), 4.04 (m, 1 H, H-6a), 4.02 (dd, 1 H, $J_{2",3"}$ 10.2, $J_{3",4"}$ 2.6 Hz, H-3"), 3.97–3.88 (m, 7 H, H-2, 4, 6b, 4', 2", 5", CH₂O), 3.79 (dd, 1 H, $J_{5",6'a}$ 7.6, $J_{6'a,6'b}$ 11.6 Hz, H-6'a), 3.74 (dd, 1 H, H-6'b), 3.72 (s, 3 H, MeO), 3.69 (dd, 1 H, $J_{3',4'}$ 3.5 Hz, H-3'), 3.65–3.59 (m, 3 H, H-5, 5', CH₂O), 3.49 (dd, 1 H, $J_{2',3'}$ 9.8 Hz, H-2'), 2.42, 2.20 (each t, 2 H, J 7.4 Hz, CH₂CO), 2.05 (s, 3 H, Ac), 1.64–1.30, (m, 12 H, (CH₂)₆), 1.19, (d, 1 H, $J_{5",6''}$ 7.2 Hz, H-6").
- 13. Minimum concentration needed for inhibition:

Inhibitors / Lectin or Antibody	UEA-I	anti-H MoAb
Fuc α 1 \rightarrow 2Gal β 1 \rightarrow 4GlcNAc β O(CH ₂) ₈ CO ₂ Me	0.313 mM	1.25 mM
5 SFuc α 1 \rightarrow 2Gal β 1 \rightarrow 4GlcNAc β O(CH ₂) ₈ CO ₂ Me	1.25 mM	0.154 mM

(Received in Japan 7 December 1995; revised 16 January 1996; accepted 17 January 1996)