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Abstract: 3-exo-Substituted 2-azabenzonorbornenes are accessible
from 7-azabenzonorbornadienes in good yields and high enantio-
meric excess via asymmetric hydroboration–oxidation, followed by
tandem deoxygenation–rearrangement–electrophile trapping and
also provide access to substituted aminomethylindenes.
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Radical cascade processes constitute a powerful method-
ology for the fast assembly of complex molecular frame-
works.1 We previously demonstrated the synthetic utility
of nitrogen-directed radical rearrangements,2 and recently
applied this concept in a neophyl-type rearrangement pro-
cess (4 → 5) to obtain racemic 2-azabenzonorbornenes,
e.g. 6, using xanthates 3 of 7-azabenzonorbornenols 2
(Scheme 1).3 To build on this latter methodology we
sought firstly to develop an asymmetric entry and second-
ly to trap the rearranged radical 5 with an electrophile in
tandem with the deoxygenation–rearrangement.

Scheme 1 Reagents and conditions: (a) 9-BBN, THF, 20 °C, 24 h,
then NaOH, H2O2, 0 °C → 20 °C, 90 min; (b) KH, THF, then CS2,
then MeI; (c) (Me3Si)3SiH, AIBN (slow addition), PhMe, reflux, 2 h.

To examine the first objective, initial studies were under-
taken screening ligands in rhodium-catalysed asymmetric
hydroboration–oxidation4 for desymmetrisation of 7-aza-
benzonorbornadiene 1. However, yields and ees for alco-
hol 2 could not be optimised to synthetically useful

levels.5 Alkene hydroboration–oxidation using organobo-
ranes derived from a-pinene has been shown to be useful
for the preparation of alcohols in high ee,6 and (–)-diiso-
pinocampheylborane [(–)-Ipc2BH] has recently been suc-
cessfully applied to the structurally related tropenone
framework.7 We envisaged that, by analogy, asymmetric
hydroboration–oxidation of readily available benzyne/N-
Boc-pyrrole cycloadduct 18 might generate alcohol 2 in
good ee. We were pleased to discover that hydroboration–
oxidation with 1.5 equivalents (–)-Ipc2BH, [prepared
from commercial (+)-a-pinene of 92% ee according to the
method of Brown]9 furnished alcohol (–)-2 in 84% yield
and 95% ee (Equation 1).10

Equation 1

In order to determine the absolute stereochemistry of (–)-
2, rearranged–reduced azacycle (+)-6 was prepared from
(–)-2 (Scheme 2) and subsequently converted to pyrroli-
dine diester (+)-7 by oxidation using RuO4 generated in
situ,11 followed by esterification using Me3SiCHN2.

12

Commercially available lactam (1R)-(–)-8 was also trans-
formed to (+)-7, following a procedure for the racemate
via azabicycle (+)-9.13,14 These results imply that the
absolute stereochemistry of azacycle (–)-2 and its deriva-
tives is as shown. The sense of asymmetric induction on
hydroboration with (–)-Ipc2BH is consistent with that
observed with tropenone derivatives.7

Attention then turned to exploring the second objective,
and deoxygenation of methyl xanthate (+)-3 was attempt-
ed in the presence of methyl acrylate. It was noted that the
optimised conditions for deoxygenation–reduction [slow
addition of (Me3Si)3SiH to refluxing xanthate 3 in
toluene]3 were very similar to those previously reported
for silane-mediated xanthate deoxygenation–electrophile
trapping.15 It was found that addition over 100 minutes of
a solution of (Me3Si)3SiH (1.5 equiv), methyl acrylate
(1.5 equiv) and AIBN (0.5 equiv) in toluene to a refluxing
solution of xanthate (+)-3 in toluene (0.035 M) gave a
good yield of rearranged trapped azacycle (+)-10
(Equation 2).16
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Equation 2

Previous NOE studies on a related skeleton, 11 (Figure 1)
showed enhancement at Ha upon irradiation at Hb.

3b How-
ever, in trapped azacycle 10 no enhancement was seen be-
tween Ha and Hc, but rather between Ha and Hd, indicating
exclusively exo trapping of radical 5.

Figure 1

Encouraged by the above trapping result, other represen-
tative electron-deficient alkenes were examined and the
corresponding rearranged–trapped azabicyclic adducts 12
(Equation 3) were obtained in 43-77% yields (Table 1,
entries 2–4).16

The more electron-deficient alkenes (entries 1, 2 and 4)
gave good yields of the trapped azacycles 12. Phenyl-
vinylsulfone (entry 3) gave an approximately 1:1 mixture

of trapped and reduced azacycles, suggesting that the rate
of addition of rearranged radical 5 to phenylvinylsulfone
is approximately equal to that of hydrogen-atom transfer
from (Me3Si)3SiH. In contrast, the less electron-deficient
alkenes such as diethyl acetal (entry 6) gave only rear-
ranged–reduced material 6, and the alkene appeared to
have no reactivity with respect to the deoxygenated xan-
thate under these conditions. In contrast, N,N-dimethyl
acrylamide gave only a poor yield of reduced material but
a small amount of hydrosilylated alkene was also recov-
ered and hydrosilylation of the alkene may be a significant
competing process in these reactions.17,18 In all cases,
none of the directly reduced or trapped azacycles from the
unrearranged radical 4 were observed. Substitution at the
b-carbon of the alkene was tolerated: crotonaldehyde
(entry 7) gave a good yield of trapped product, as a 2:1
mixture of diastereomers.

It was considered important to establish if the above
chemistry could be extended to other azacycles previously
shown to undergo deoxygenation–rearrangement.3 We
were pleased to find that the asymmetric hydroboration–
oxidation chemistry could also be applied to the more
electron-rich cycloadduct 13, furnishing alcohol (+)-14 in
84% yield and >99% ee.19 Similarly, the more substituted
framework of cycloadduct 1520 also proved amenable to
these conditions, giving alcohol (+)-16 in 67% yield and
>99% ee (Scheme 3).21 These representative results
suggest that other azacyclic frameworks could be suitable
substrates for this desymmetrisation process.

Scheme 2 Reagents and conditions: (a) as Scheme 1; (b)
RuCl3·H2O, (12 mol%), NaIO4 (17 equiv), H2O-EtOAc-MeCN
(2:1:1), 20 °C, 4 h, then Me3SiCHN2 (2.1 equiv), MeOH-PhMe
(3:10), 20 °C, 45 min; (c) LiAlH4 (5 equiv), THF–Et2O (5:1); (d)
RuCl3·H2O (15 mol%), NaIO4 (16 equiv), H2O–EtOAc, (4:11), 0 °C,
8 h, then Me3SiCHN2 (2.1 equiv), MeOH–PhMe (3:10), 20 °C, 45
min.
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Table 1 Yields of Rearranged–Trapped Azabicyclic Adducts 12

Entry Alkene Yield of adduct 12 
(%)

Yield of 6 
(%)

1 56 0

2 61 0

3 43 38

4 77 0

5 0 37

6 0 81
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For these latter alcohols, dexoxygenation–rearrange-
ment–trapping of the corresponding xanthates 17 and 18,
was followed by isomerisation to give substituted amino-
methylindenes 19-23 (Scheme 4).

Scheme 4

Isomerisations of the intermediate 2-azabenzonor-
bornenes 24 are likely to be catalysed by traces of acid and
probably occur in these cases due to increased stability of
the putative intermediate cation 25 (Scheme 5).

Scheme 5

In conclusion, we have developed an asymmetric access
to 3-exo-substituted 2-azabenzonorbornenes in good
yields by a novel tandem deoxygenation–rearrangement–
electrophile trapping methodology and demonstrated
routes to substituted pharmaceutically significant22

aminomethylindenes. Whilst stannane-mediated dehalo-

genations and silane-mediated xanathate deoxygenations
have been reported in tandem with electrophile trap-
ping,1,15,23 to the best of our knowledge, the current results
constitute the first examples of tandem xanthate deoxy-
genation–rearrangement–electrophile trapping cascades.
We are continuing to investigate the scope and synthetic
applications of these reactions.
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