

Communication

Unraveling the Photoswitching Mechanism in Donor–Acceptor Stenhouse Adducts

Michael M. Lerch, Sander J. Wezenberg, Wiktor Szymanski, and Ben L. Feringa

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b01722 • Publication Date (Web): 06 May 2016

Downloaded from http://pubs.acs.org on May 7, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Unraveling the Photoswitching Mechanism in Donor– Acceptor Stenhouse Adducts

Michael M. Lerch[†], Sander J. Wezenberg[†], Wiktor Szymanski^{†,‡}, Ben L. Feringa^{*,†}

[†] Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

[‡]Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands

Supporting Information Placeholder

ABSTRACT:Molecular photoswitches have opened up a myriad of opportunities in applications ranging from responsive materialsand control of biological function to molecular logics. Here, we show thatthe photoswitching mechanism of donor–acceptor Stenhouse adducts (DASA), a recently reported class of photoswitches, proceeds by photoinducedZ–*E* isomerization,followed by a thermal,conrotatory 4π -electrocyclization. The photogeneratedintermediate is manifested by a bathochromically shiftedband in the visible absorption spectra of the DASA. The identification of the role of this intermediate reveals a key step in the photoswitching mechanism that is essential tothe rational design of switching properties *via*structural modification.

Molecular switches undergo reversible changes in their structure in response to external stimuli, such aslight or changes in the chemical environment.¹ The use of light as an external stimulus is often preferred over chemical stimuli due to its non-invasive nature,²⁻⁶ and orthogonality to many other processes. Furthermore, light can be applied withprecise spatial and temporal control.^{3,4} The photoinducedchangesto molecular structure are manifested in changes to molecular properties, such as dipole moment, conjugation and charge, which can alterthe function of molecules in more complex systems.⁷⁻¹¹Photoswitchable control elements have been applied successfully in material sciences, 5,12-16 supramolecular chemistry¹⁷⁻²¹ and biological systems.²²⁻²⁷ The range of wellestablished photoswitches includes azobenzenes, diarylethenes and spiropyrans.^{1,15,28–32}The properties of photoswitches can often be tuned easily to provide optimum performance for specific applications, primarily because of the detailed understanding available of the underlying electronic and steric factors that control their photoswitching behavior.

An especially important tunable property is that of switching withvisible light.^{26,33–36}Indeed visible light controlled photoswitches are receiving increasing attention mainly due to photodamage and -degradation observed with short wavelength irradiation in biological and material systems.^{26,37–39}Photoswitches that respond to light in the wavelength range650 nm to 900 nmare especially important for biological applications,^{40,41} as was recently demonstrated by Woolley and co-workers with the switching of azobenzenes in whole blood.⁴²

A new class of visible light photoswitches,the donor-acceptor Stenhouse adducts (DASAs), has been recently introduced by Read de Alaniz, Hawker and co-workers(Figure 1).⁴³⁻⁴⁵ DASAs are stable, synthetically accessible T-type photoswitches.^{1,43,44}Initial reports explored the structural scope of DASAs and demonstrated the remarkable control over micelle stability that they can provide and the potential as phase-transfer tags.^{43–48}Upon irradiation with visible light (λ = 540 – 580 nm) in aromatic solvents (*e.g.* toluene), the linear triene-form Aof DASA cyclizes to a zwitter-ionic formB(Figure 1 and S1–S6). FormBis thermally unstable and reverts to the trieneisomerAon the time-scale of seconds to minutes (Figure 1). The triene formA is strongly colored ($\epsilon_{\lambda max} \sim 10^5 \text{ M}^{-1} \text{ cm}^{-1}$), whereasBis colorless.⁴³ Although mechanistic studies have, to the best of our knowledge, not been reported to date,^{46,49}a 4 π -electrocyclizationis anticipated to be crucial, by analogy to the Piancatelli rearrangement.^{50–52}

Figure 1. Molecular structure and photoswitching of donoracceptor Stenhouse adducts (DASAs; 1-2) in toluene.

The understanding of the specific mechanism by which DASAs undergo photoswitching is essential toenable the full potential of these highly promising switches to be realized. It is furthermore important for addressingthe pronounced solvent-dependence of the photoswitching and the ability to tune thermal half-life of **B** and wavelength of excitation for **A**. Insightinto the mechanism is expected to lead to the application of DASAs in more complex functional systems, as was the case withspiropyrans after their switching mechanism was understood well enough to use these photochromic compounds in a highly diverse range of applications.^{15,30–32,53–55}

Herein, we show that the photoswitching mechanism of DA-SAs involves an actinic step which precedes thermal 4π -electrocyclization. Weidentifya photo-generated intermediateA' (proposed *Z*–*E*isomerization),which then undergoes thermal 4π -electrocyclization to give the closed form**B**. Temperature dependent UV/Vis absorption spectroscopy and NMR measurements (in addition to TD-DFT calculations)provide insight into the mechanism and reaction kinetics.

Journal of the American Chemical Society

Figure 2.Photoswitching mechanism of DASAs: a) Proposed photoswitching mechanism;b) Representation of the photoswitching pathway in an energy level diagram.

Consideration of possible reaction mechanisms led us to propose initial Z–Eisomerization (to form **A'**, Figure 2) followed by cyclization to **B** (Figure 2). Considering the stereochemistry of **B** (confirmed by X-ray analysis by the groups of Hawker and Read de Alaniz^{43,44}), the cyclization is expected to be a conrotatory, thermally allowed 4π -electrocyclization.^{43,44}Hence, we focused on observing the intermediate **A'**. Studyof the photoswitching process in toluene led to the observation of a transient band in the UV/Vis absorption spectrum during photoswitching of **1**(Figure 3, Figure S11–S13). Upon irradiation, the main absorption band of the linear triene ("open") **A** at545 nm diminishes, while a new, red-shifted absorption band at 600 nm transiently appears.

The time-dependent behavior of the visible absorption of 1at 293 Kis as follows (Figure 3b, Scheme 1a, and Figures S7, S11–S13): a rapid initial increase in absorbance at λ_{max} 600 nm is observed upon irradiation, followed by a slower decay. Cessation of irradiation is followed by a rapid decrease in absorbance at600 nm. Notably, this absorption bandis not observed upon thermal relaxation from state **B** to **A**. The maximum absorption reached at 600 nm was directly dependent on the photon flux and wavelength of irradiation (Figures S18 and S19). At 253 K, the absorption band at 600 nm increases and is then stable during

Figure 3. Observation of a transient absorption band: a) Absorption spectra at indicated time-points during photoswitching of 1 (293 K, $4 \mu M$ in toluene) under broad band visible irradiation; b) Time-dependent change in absorption of A (at 545 nm) and A' (at 600 nm) with enlarged irradiation regime.

Scheme 1.Definition of the various phases involved in the photoswitching of compound 1 at 293 K (a) and 253 K (b) on experimental data: Blue solid line = absorption maximum of A at 545 nm; and light blue dotted line = absorption maximum of A' at 600 nm.

irradiation (Scheme 1b; Figure S17). Upon cessation of irradiation, the absorbance of the band decreases exponentially with an isosbestic point maintained at 566 nm (Figure S17).

These data indicatethat the formation of isomer A', the absorption of which is red-shifted compared to that ofl (SI section 5.2.6) is due to photoinduced Z-Eisomerization. Upon irradiation, A' is generated from A, with aphotostationary state (PSS) reached rapidly ($\varphi = 0.17$; Scheme 1, *phase ii*, Figures S7–S10) and maintained under irradiation. $k_1(hv)$ and $k_2(hv)$ are both photochemical reaction rates that are dependent on the photokinetic factors (Figure 2a). At low temperature (< 253 K) the absorption (Scheme 1b, phaseiii) remains unchanged once the PSS is reached, indicating equilibrium at $k_{1,obs}[A] = k_{1,obs}[A']$ (vide infrafor kinetic analyses). At higher temperatures, A' not only reverts to A $(k_{-1}(hv))$ and $k_{-1,thermal}$) but can also cyclize to **B** (k_2). This leads to a decrease in absorption during irradiation (Scheme 1a, phase iii, 293 K). As k. 1,thermal k2,obs., most of A' is switched back to A (Scheme 1, phase iv). However, **B** also can revert back to Athermally (Scheme 1, phase v) viaA' (k-2,obs. and k-1,thermal). A' does not reach a significant steady state concentration under these conditions, and hence, the transient absorption in backswitching from **B** to **A** is not observed (k_{-1.thermal}>> k_{-2.obs}; Figures S7–S19). Furthermore, A' generated through irradiation at low temperature (<253 K), does not react further to formB(FigureS17).Thesedata and the model developed are summarized in the energy level diagram in Figure 2b. The photoswitching behavior of 2 under identical conditions(Figure S4–S6) is similar to the one of compound 1. Despite the fact that the rate of thermal relaxation is higher for 2, a transient absorption band is also observed.

The photoswitching of 1 and 2by photochemicalZ–Eisomerization is followed by a conrotatory, thermal 4π -electrocyclization. The rate limiting step for the overall reaction from A to B is $k_{2 obs}$. For reversion of **B** to **A**, the rate limiting step is k_{2,obs}. Importantly, the proposed mechanism (Figure 2) further involves a late-stage proton-transfer. In the presence of water, these steps are expected to be fast. However, some solvents may favor isomeric distribu-(similar to spiropyrans,^{31,56} diarylethenes5 tions and azobenzenes^{58,59}) and thus influence the kinetics and thereby the possible observation of the absorption band. Halogenated solvents (e.g. dichloromethane) favor the elongated triene structure A.⁴ Nevertheless, photoswitching to A' is observed (FiguresS47-S49). Polar protic solvents (e.g. methanol and water) result in irreversible photoswitching from A to B^{44} with no observed transient absorption (Figure S43). No decomposition of **B** in water upon prolonged irradiation was observed (Figures S44 and S45). Moreover, under aqueous conditions A cyclizes slowly, but spontaneously to **B** in the dark (Figure S46).

Page 2 of 5 ACS Paragon Plus Environment

1

1

To further investigate the nature of intermediate A', and to connect its structure to the observed bathochromic shift of the transient absorption, TD-DFT calculations were performed (SI section 12). The obtained results confirmed that Z-Eisomerization can cause a bathochromic shift in the absorption spectrum. This finding is further supported by reports on the bathochromic shift of the absorption spectrum upon photoisomerization of analogous cyanine dyes that cannot undergo cyclization.^{60,61}Moreover, lowtemperature ¹H-NMR spectroscopy measurements with *in*-NMR irradiation show the photogeneration of a single unstable intermediate in deuterated dichloromethane that mainly affects chemical shifts in the polyene region (SI section 11).

Finally, the kinetics of photoswitching were studied in more detail. Reaction rates of the different steps were measured directly or indirectly (Table 1) and fitted to a kinetic model based on our mechanistic hypothesis (Figure 2, SI section 13). The timedependence of the production and consumption of Bwas calculated by making the assumption that A' and Bshow negligible absorbance at 545 nm and A and Bshow negligible absorbance at 600 nm. Overall, the measured and modelled reaction rates agree qualitatively and are in line the proposed energy level diagram (Figure 2b).

Table 1. Measured rate constants and activation parameters for DASA 1 (given for 293 K).

entry	rate-constant ^{a)}	k (s ⁻¹)	ΔG^{\ddagger} (kJ mol ⁻¹)	t _{1/2} (s)
1	k-1,thermal	1.62	70.6	0.43
2	\mathbf{k}_2	0.17	76.0	4.05
3	k_2	0.0045	84.9	154

a) See Figure 2 for scheme.

In conclusion, we report the observation of a transientabsorption band during the photoswitching of DASA, which we propose manifests Z-Eisomerization. The Z-Eisomerization is followed by thermally driven ring-closure. The observed photoswitching behavioris analogous to that of spiropyrans.^{15,30–32,62–64}Notably, for spiropyrans the cisoid intermediates are generally not observed and usually only stable enough to be detected at low tem-perature and in presence of steric bulk in the molecule.^{15,62,65–67}The observed intermediate**A**' is responsible for a bathochromically shifted ($\Delta\lambda = 55$ nm)absorption that appears transiently during irradiation. A' is thermally unstable, but nevertheless it can be studied spectroscopically at low temperature(253 K). Importantly, the present study lays the foundation for a more detailed understanding of this new class of photoswitches. It gives insights into the nature of intermediate A' and the relative stabilities of A' and B. Understanding the role of each species in the overall photoswitching mechanism enables a structured approach to address the thermal stability of the intermediates, spectral properties and solvent dependence. For example, solvatochromism will be mainly governed by the relative stability of A and B, whereas the wavelength of activation will depend only on the Z-Eisomerization step. These data will enable the full potential of this remarkable new class of photoswitch to be realized.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization of compounds, additional UV/Vis absorption spectra, reversible photochromism

studies and kinetic modelling. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* b.l.feringa@rug.nl

ACKNOWLEDGMENT

The Netherlands Organization for Scientific Research (NWO-CW, Top grant to B.L.F., VIDI grant no. 723.014.001 for W.S. and Veni grant no. 722.014.006 to S.J.W.), the Royal Netherlands Academy of Arts and Sciences Science (KNAW), the Ministry of Education, Culture and Science (Gravitation program 024.001.035) and the European Research Council (Advanced Investigator Grant, no. 227897 to B.L.F) are acknowledged for financial support. The Swiss Study Foundation is acknowledged for a fellowship to M.M.L. We thank P. van der Meulen for help with the NMR studies and T. Tiemersma-Wegman for ESI-MS analyses and Prof.W.R. Browne and J. Chen for technical assistance and discussion.

REFERENCES

- (1)Molecular switches, 2nd Edition; Feringa, B. L., Browne, W. R., Eds.; Wiley-VCH: Weinheim; Germany, 2011.
- (2)Griesbeck, A. G.; Oelgemöller, M.; Ghetti, F. CRC Handbook of Organic Photochemistry and Photobiology, 3rd Edition., 2 Vol.; CRC Press, 2012.
- (3) Juris, A.; Ceroni, P.; Balzani, V. Photochemistry and photophysics; Wiley-VCH: Weinheim; Germany, 2014.
- (4)Brieke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A. Angew. Chem. Int. Ed.2012, 51, 8446-8476.
- (5) Russew, M.-M.; Hecht, S. Adv. Mater. 2010, 22, 3348-3360.
- Fihey, A.; Perrier, A.; Browne, W. R.; Jacquemin, D. Chem. (6)Soc. Rev.2015, 44, 3719-3759.
- (7)Balzani, V.; Credi, A.; Ravmo, F.; Stoddart, J. Angew. Chem. Int. Ed.2000, 39, 3348-3391.
- (8) Erbas-Cakmak, S.; Leigh, D. A.; McTernan, C. T.; Nussbaumer, A. L. Chem. Rev.2015, 115, 10081-10206.
- (9)Natali, M.; Giordani, S. Chem. Soc. Rev.2012, 41, 4010-4029.
- (10)Balzani, V.; Credi, A.; Venturi, M. Molecular devices and machines : concepts and perspectives for the nanoworld; Wiley-VCH: Weinheim; Germany: Weinheim, 2008.
- (11)Molecular machines and motors; Topics in current chemistry, Vol. 354; Credi, A.; Silvi, S.; Venturi, M. Eds.; Springer, 2014.
- Iamsaard, S.; Aßhoff, S. J.; Matt, B.; Kudernac, T.; Cornelissen, (12)J. J. L. M.; Fletcher, S. P.; Katsonis, N. Nat. Chem.2014, 6, 229-235
- (13)Baroncini, M.; d'Agostino, S.; Bergamini, G.; Ceroni, P.; Comotti, A.; Sozzani, P.; Bassanetti, I.; Grepioni, F.; Hernandez, T. M.; Silvi, S.; Venturi, M.; Credi, A. Nat. Chem.2015, 7, 634-640.
- (14) Lebeau, B.; Innocenzi, P. Chem. Soc. Rev.2011, 40, 886-906.
- (15)Klajn, R. Chem. Soc. Rev.2014, 43, 148-184.
- Pardo, R.; Zayat, M.; Levy, D. Chem. Soc. Rev.2011, 40, 672-(16)687.
- (17)Stoll, R. S.; Hecht, S. Angew. Chem. Int. Ed. Engl.2010, 49, 5054-5075.
- (18)Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev.2015, 44, 5341-5370.
- (19) Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Chem. Rev.2015, 115, 7543-7588.
- (20)Wezenberg, S. J.; Vlatković, M.; Kistemaker, J. C. M.; Feringa, B. L. J. Am. Chem. Soc.2014, 136, 16784-16787.
- (21) Vlatković, M.; Feringa, B. L.; Wezenberg, S. J. Angew. Chem. Int. Ed.2016, 55, 1001-1004.
- (22)Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V; Velema, W. A.; Feringa, B. L. Chem. Rev.2013, 113, 6114-6178.
- (23) Velema, W. A.; Szymański, W.; Feringa, B. L. J. Am. Chem. Soc.2014, 136, 2178-2191. (24)
 - Broichhagen, J.; Frank, J. A.; Trauner, D. Acc. Chem. Res.2015,

Page 3 of 5

48, 1947-1969.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

60

- (25) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev.2011, 40, 4422-4437.
- (26) Dong, M.; Babalhavaeji, A.; Samanta, S.; Beharry, A. A.; Woolley, G. A. Acc. Chem. Res.2015, 48, 2662-2670.
- (27) Velema, W. A.; van der Berg, J. P.; Hansen, M. J.; Szymański,
 W.; Driessen, A. J. M.; Feringa, B. L. *Nat. Chem.*2013, *5*, 924-928.
- (28) Bandara, H. M. D.; Burdette, S. C. Chem. Soc. Rev.2012, 41, 1809-1825.
- (29) Irie, M. Chem. Rev. 2000, 100, 1685-1716.
- (30) Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev.2000, 100, 1741-1754.
- (31) Minkin, V. I. Chem. Rev. 2004, 104, 2751-2776.
- (32) Lukyanov, B. S.; Lukyanova, M. B. Chem. Heterocycl. Compd.2005, 41, 281-311.
- (33) Samanta, S.; Beharry, A. A.; Sadovski, O.; McCormick, T. M.; Babalhavaeji, A.; Tropepe, V.; Woolley, G. A. J. Am. Chem. Soc.2013, 135, 9777-9784.
- (34) Bléger, D.; Hecht, S. Angew. Chem. Int. Ed.2015, 54, 11338-11394.
- (35) Bléger, D.; Schwarz, J.; Brouwer, A. M.; Hecht, S. J. Am. Chem. Soc.2012, 134, 20597-20600.
- (36) Knie, C.; Utecht, M.; Zhao, F.; Kulla, H.; Kovalenko, S.; Brouwer, A. M.; Saalfrank, P.; Hecht, S.; Bléger, D. Chem. Eur. J.2014, 20, 16492-16501.
- (37) Dong, M.; Babalhavaeji, A.; Hansen, M. J.; Kalman, L.; Woolley, A. Chem. Commun.2015, 51, 12981-12984.
- (38) Broichhagen, J.; Frank, J. A.; Johnston, N. R.; Mitchell, R. K.; Šmid, K.; Marchetti, P.; Bugliani, M.; Rutter, G. A.; Trauner, D.; Hodson, D. J. Chem. Commun.2015, 51, 6018-6021.
- (39) Olejniczak, J.; Carling, C.-J.; Almutairi, A. J. Control. Release 2015, 219, 18-30.
- (40) Weissleder, R.; Ntziachristos, V. *Nat. Med.***2003**, *9*, 123-128.
- (41) Yoon, I.; Li, J. Z.; Shim, Y. K. Clin. Endosc. 2013, 46, 7-23.
- (42) Samanta, S.; Babalhavaeji, A.; Dong, M.; Woolley, G. A. Angew. Chem. Int. Ed. 2013, 52, 14127-14130.
- (43) Helmy, S.; Leibfarth, F. A.; Oh, S.; Poelma, J. E.; Hawker, C. J.; Read de Alaniz, J. J. Am. Chem. Soc.2014, 136, 8169-8172.
- (44) Helmy, S.; Oh, S.; Leibfarth, F. A.; Hawker, C. J.; Read de Alaniz, J. J. Org. Chem. 2014, 79, 11316-11329.
- (45) Helmy, S.; Read de Alaniz, J. *Adv. Heterocycl. Chem.***2015**, *117*, 131.

- (46) For recent DFT calculations: Laurent, A.; Medved, M.; Jacquemin, D. ChemPhysChem2016(DOI: 10.1002/cphc.201600041).
- (47) Singh, S.; Friedel, K.; Himmerlich, M.; Lei, Y.; Schlingloff, G.; Schober, A. ACS Macro Lett. 2015, 4, 1273-1277.
- (48) Mason, B. P.; Whittaker, M.; Hemmer, J.; Arora, S.; Harper, A.; Alnemrat, S.; McEachen, A.; Helmy, S.; Read de Alaniz, J.; Hooper, J. P. Appl. Phys. Lett. 2016, 108, 041906.
- (49) Honda, K.; Komizu, H.; Kawasaki, M. J. Chem. Soc. Chem. Commun. 1982, No. 4, 253-254.
- (50) Veits, G. K.; Wenz, D. R.; Read de Alaniz, J. *Angew. Chem. Int. Ed.***2010**, *49*, 9484-9487.
- (51) Palmer, L. I.; de Alaniz, J. R. Angew. Chem. Int. Ed.2011, 50, 7167-7170.
- (52) Palmer, L. I.; de Alaniz, J. R. Org. Lett. 2013, 15, 476-479.
- (53) Suda, M.; Kato, R.; Yamamoto, H. M. Science2015, 347, 743-746.
- (54) Liu, Z.; Liu, T.; Lin, Q.; Bao, C.; Zhu, L. Angew. Chem. Int. Ed.2015, 54, 174-178.
- (55) Buback, J.; Kullmann, M.; Langhojer, F.; Nuernberger, P.; Schmidt, R.; Würthner, F.; Brixner, T. J. Am. Chem. Soc.2010, 132, 16510-16519.
- (56) Murugan, N. A.; Chakrabarti, S.; Ågren, H. J. Phys. Chem. B2011, 115, 4025-4032.
- (57) Irie, M.; Sayo, K. J. Phys. Chem. 1992, 96, 7671-7674.
- (58) Rau, H. Angew. Chem Int. Ed. Engl. 1973, 12, 224-235.
- (59) Buncel, E.; Rajagopal, S. J. Org. Chem. 1989, 54, 798-809.
- (60) Aramendia, P.H.; Krieg, M.; Nitsch, C.; Bittersman, E.; Braslavsky, S.E. Photochem. Photobiol., 1989, 48, 187-194.
- (61) Benniston, A.C.; Gulliya, K.S.; Harriman, A. J. Chem. Soc., Faraday Trans., **1994**, *90*, 953-961.
- (62) Wojtyk, J. T. C.; Wasey, A.; Kazmaier, P. M.; Hoz, S.; Buncel, E. J. Phys. Chem. A2000, 104, 9046-9055.
- (63) Heiligman-Rim, R.; Hirshberg, Y.; Fischer, E. J. Phys. Chem. 1962, 66, 2470-2477.
- (64) Fischer, E.; Hirshberg, Y. J. Chem. Soc. **1952**, 4522-4524.
- (65) Minkin, V. I.; Metelitsa, A. V; Dorogan, I. V; Lukyanov, B. S.; Besugliy, S. O.; Micheau, J.-C. J. Phys. Chem. A2005, 109, 9605-9616.
- (66) Krysanov, S. A.; Alfimov, M. V. Chem. Phys. Lett. 1982, 91, 77-80.
- (67) Tian, Z.; Wu, W.; Wan, W.; Li, A. D. Q. J. Am. Chem. Soc.2011, 133, 16092-16100.

Table of Content (TOC):

Observation of a Photogenerated Intermediate