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A New End Game for Aphidicolin 
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Summary. A highly efficient, stereocontrolled synthesis of aphidicolin from its degradation product, 
3c¢,18-isopropylidenedioxy-17-noraphidicolan-16-one, has been achieved. 

In 1972 Hesp and coworkers 2 reported the structure of aphidicolin (1), a novel diterpene derived from the 

fungus Cephalosporium aphidicola, which displays marked in vitro activity against Herpes simplex. 3 Given the 

unusual architecture, in conjunction with the aforementioned antiviral activity, it is not surprising that 

aphidicolin has been the subject of considerable synthetic effort. Indeed, no fewer than seven total syntheses 4 

have been recorded since 1979, when Trost 4a and McMurry 4b concurrently announced the first total syntheses. 

Most recently (1987), Holton et al. 4i disclosed the first enantioselective synthesis of aphidicolin, thereby 

unambiguously confirming the absolute stereochemistry. 
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Interestingly all but the Ireland approach 4h were based conceptually on the three step conversion of 3~,18- 

dihydroxy-17-noraphidicolan-16-one (2), or closely related derivatives thereof (i.e., acetal or ketal), to 

aphidicolin developed by Hesp 2b in conjunction with the original degradation studies. This now classic end game 

involved treatment of 2 with dimethylsulfoxonium methylide to afford a mixture of epoxides (i.e., 3), which 

upon treatment with aqueous KOH, followed by acetonide formation yields a separable mixture of 4 and 5 in 42 

and 28% overall yield respectively, with the major product possessing the correct relative stereochemistry at 

C(16). Although moderately efficient, this scheme suffers from the lack of stereoselectivity in the initial 
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epoxidation. 

problem; the results of this study are reported here. 5 
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In connection with an ongoing aphidicolin synthesis in our laboratory, we have addressed this 
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Well aware that epoxidation of bicyclo[3.2.1]oct-2-ene and related systems proceeds with high exo-stereo- 

selectivity, 6 we reasoned that epoxidation of an olefin such as 7, followed by hydride opening at the least 

hindered end of the derived epoxide, would provide a stereoselective route to aphidicolin. Our initial target was 

therefore seen as allylic alcohol 7. 
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Towards this end, we subjected the readily available mixture of epoxides 32 to the rearrangement conditions 

of Nozaki (i.e., diethylaluminium 2,2,6,6-tetramethylpiperidide, Phil, 0°C.); 7 the result was a 75% yield of 

aldehydes 8, 8a with no trace of the desired allylic alcohol. Attempts to accomplish the desired rearrangement 

with TMS-OTf and DBU 9 also led to aldehydes 8 in 83 % yield. In fact, the only conditions that proved at all 

encouraging were TMS-OTf and 2,6-1utidine (CH2CI2; -78°C for 10 min.). Under these conditions, a mixture 

of the desired allylic alcohol 7 (40%) 8a along with aldehydes 8 (45%) 8a was obtained. In view of these 

difficulties, we sought an alternate route to 7 beginning with 2. 
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Ideal in this regard appeared to be carbonylation of the enol triflate derived from 2, followed by epoxidation 

and reduction. With this scenario in mind, ketone 2 was converted to enol triflate 98 (triflic anhydride, 2,6- 
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di-t-butyl-4-methylpyridine, CH2CI2) 10 in near quantitative yield. Palladium catalyzed carbonylation 

[Pd(OAc)2, Ph3P, Et3 N, CO, MeOH, DMF] 11 then provided enoate 10 (75 %),8 which in turn was epoxidized 

with m-chloroperoxybenzoic acid buffered with Na2HPO4 (CH2CI2 at reflux; 8 h); 12 the result was epoxy ester 

11, 8 obtained in 90% yield. Carbon NMR analysis at 125-MHz verified that a single compound was in hand. 

Reduction of the latter with lithium aluminium hydride (5 tool. eq., THF, 70°C), followed by hydrolysis of the 

acetonide (Amberlite IR-120 H +, methanol at reflux) gave synthetic aphidicolin (rap 226-228, lit. 1 227- 

233) in near quantitative yield for the two steps. That synthetic aphidicolin was identical with natural 

aphidicolin was confirmed by careful spectral comparison [i.e., 1H (500 MHz) and 13C (125 MHz) NMR, IR and 

mass spectra]. 
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In summary, we have achieved an efficient, highly stereoselective synthesis of aphidicolin from its readily 

available degradation product, 3¢¢,18-isopropylidenedioxy-17-noraphidicolan-16-one. The sequence required 

five steps and proceeded in 67 % overall yield. 
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