
Temh&onLetters. Vol.31. No.44, n, 64334436 1990 
Printed in Great Britain 

oo404039/90 $3.00 + .oo 
Perg- Rem pk 
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Abstract. Alk4enesulphonyl chlorides and alk-5enesulphonyl chlorides cyclise under free 
radical conditions mainly in the & mode to give tetrahydrothiopyran-1 , l-dioxide and thiepane- 1, l- 
dioxide respectively. 

Sulphonyl radicals, RS02’. generated from sulphonyl chlorides, readily undergo 

intermolecular addition to alkenes to give sulphones. 1-3 However, the intramolecular cyclisation 

reaction, which is a potential route to cyclic B-chloro sulphones, has scarcely been investigated. 

Unsaturated sulphonyl radicals were proposed as intermediates in the reactions of 
pentenylcobaloximes with trichlotomethanesulphonyl chloride4 and sulphur dioxide.5 Cyclisation in 

the & mode to give six-membered ring tetrahydrothiopyran- 1, l-dioxides was observed. 
We generated the archetype pentenesulphonyl radical 2 by treatment of pent4enesulphonyl 

chloride, 1, with photochemically produced trimethyltin radicals, in the cavity of an EPR 
spectrometer. Radical 2 was observed in the temperature range 240-370 K but no cyclised species 

were detected at higher temperatures. 

X = Cu, Ru, C,H,SO, 
R=Bu,Ph 
M = Sn, Si 

Reduction of 1 with tri-n-butyltin hydride using photochemical initiation at 170 Oc gave mainly pent- 
4-enesulphinic acid; 3, probably produced when radical 2 abstracts hydrogen from the organotin 
hydride. However, treatment of 1 with various alternative radical initiator systems (Table) led to the 
formation of significant amounts of 3-chlorotetrahydrothiopyran-l,l-dioxide, 7. That cyclisation 
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occurs mainly in the &Q mode to give the 6-membered ring radical, 6, was established from the 
lH and I3C NMR spectra of 7 and by dehydrochlorinatlon of 7 with DBU to give the 
dihydrothiopyran- 1, l-dioxide 9. Minor amounts of 2-chloromethyltetrahydrothiophene- 1,l -dioxide 
5 were obtained, the ratio [7]:[5] being ca 8:l (Table) 

Table 
Products of Radical Reactions of Pent-4enesulphonyl Chloride 1. 

Initiator TPC Yielda 
rl.Kd% F* yields P 5 

CUCl&4IBN 150 12 loo - - 
I, 75 nd 88 - 12 

RuCMPh3P)3 170 15 loo - - 
Bu3SnH/AIBN/QIIe 80 nd 74 26 - 
(Bun3Sn)2/AIBN/PhBut 45 nd 77 12 11 
Ph3SiH/hvb 170 nd 78 14 8 

S,n% 

m “’ 170 18 91 - 

a Yield of cyclised products after prep. TIC. b For method see ref. 6. e For method see ref. 7. 
nd = not determined. 

In the CuR and Run catalysed reactions, 7 was the main product, together with some polymer. 
It is likely, however, that 2 loses S@, under the reaction conditions, to give pentenyl radicals. The 
volatile products formed in this way easily escape and this accounts for the low yields of cyclic 
sulphones. Traces of 4 were observed in the CulI catalysed reaction. The reductions of 1 with 
Bu3SnI-I or Ph3SiH gave 7 together with 8, the proportions depending on temperature. Treatment of 
7 with Bu3SnH gave 8 and therefore this product may be formed directly from radical 6 and as a 

secondary product from 7. 
In the CuII catalysed reaction of hex-5-enesulphonyl chloride, 10, at 1XPC only 

chloromethylcyclopentane, 12, formed by sulphur dioxide loss from the intermediate sulphonyl 
radical 11, was observed. However, in the Bu3SnI-I reduction of 10 at low 
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temperatures. the product of &Q cyclisation, i.e. thiepane-l,ldioxide, 14. was obtained in low 

yield. 
The mechanism of the Cull catalysed reactions is thought to involve chlorine atom transfer 

from the CuCl2 by the adduct radicalt2**, equ. (1): 

S!‘+ C&l* - S&&-K1 + CIA (1) 

CUCl + RSO&l - CuCb + RSt&’ 

In the Rull catalysed process chlorine atom transfer is believed to occur from 
Ru111 chloride9~10. In our reductions of 1 with Bu3SnI-I and Ph3SiH the main product was the 

chloro-sulphone 7. This indicates that chlorine atom transfer must occur very rapidly from the 
sulphonyl chloride, equ. (2). 

SqcHzdH’ + RSOaCl - S&&!I-ICl + RSQ’ (2) 
i.e. reaction (2) must compete effectively with hydrogen atom transfer from BugSnH, which is 
known to be very fast1 l 

Radicals centred on carbon, nitrogen and oxygen with pent-4-enyl substituents prefetentially 
cyclise in the a mode to give 5-membered ring products.12~13 The sulphonyl radicals 2 and 10 
provide a contrast in that & cyclisation is preferred. Radicals centred on second row elements 
generally show lower regioselectivity in cyclisation. 13 For example, thiyl radicals give both a and 
&Q products depending on reaction circumstances.t3@ 

That the regioselectivity of alkenesulphonyl radicals can change in favour of a cyclisation 
was shown by the reaction of the sulphonyl chloride 15 with CuC12 or PhgSiH. This gave 
exclusively the bicyclic sulphone 18 by m cyclisation to 17 as shown below. In the Ph3SiH 
reduction, 3-ethylcyclohexene was a major by-product which was 

1.J 
16 

17 c’ 18 

probably formed by loss of S@ from the sulphonyl radical 16. The surprising preference of 16 for 
5-membered ring formation can be attributed to two factors. Firstly, in the half-chair conformation of 
radical 16 the sulphonylethyl group will preferentially occupy a quasi-equatorial orientation. Models 
indicate that the radical centre is much better placed for S-membered ring formation in this 
conformation. Secondly, it is known that hexenyl radicals with cis substituents on the terminal 



carbon of the double bond show an even greater preference for 5-membered ring formation than hex- 
S-enyl itself; *3 probably because of increased steric interaction, in the transition state for dmembered 
ring formation, between the cis substituent and the hydrogens on CB. A similar effect would operate 
in the transition state for 6-membered ring formation from the quasi-axial (and quasi-equatorial) 
conformation of radical 16. 
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