Chemistry Letters 1997 437 ## Iridium-Catalyzed Redistribution of Hydrodisilanes *via* a Silyl(silylene)iridium(III) Complex: Synthesis of a Donor-Stabilized Silyl(silylene)iridium(III) Complex Masaaki Okazaki, Hiromi Tobita,* and Hiroshi Ogino* Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77 (Received January 16, 1997; CL-970032) Thermolysis of HMePhSiSiMe3 in the presence of a catalytic amount of $Ir\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_3$ resulted in the redistribution of substituents to give its isomer HMe_2SiSiMe_2Ph. We propose the mechanism involving the 1,3-Me-shift on a silyl(silylene) complex, which was trapped as a donor-stabilized silyl(silylene)iridium(III) complex. A silyl(silylene) complex has been considered as a key intermediate in transition-metal-mediated redistribution reactions of organosilicon compounds. 1 It was found that photo-chemical conversion of CpFe(CO)₂SiMe₂SiMeR₂ (R = Ph, Et, CD₃) to $CpFe(CO)_2SiMe_{3-n}R_n$ (n = 0, 1, 2) is accompanied by the scrambling of substituents on silicon atoms, and Pannell et al. and we proposed a mechanism involving the 1.3-migration of substituents on silyl(silylene) intermediates.² Recently, Pannell et al. reported that thermolysis of hydrodisilanes with a catalytic amount of $(\eta^5-C_5H_5)Fe(CO)(PPh_3)(SiMe_3)$ caused isomerization of disilanes, where they proposed a mechanism involving a silvl(silvlene)iron intermediate.³ Tamao et al. described a Pd(0)catalyzed skeletal rearrangement of alkoxytrisilanes, and they proposed the mechanism involving a silyl(silylene)palladium(II) intermediate, which is stabilized by an intramolecular donor.⁴ In these catalytic reactions, however, nothing has been explored on the isolation of the intermediate, i.e., the silyl(silylene) complex or its stabilized form. We report here an Ir(I) complex $Ir\{\eta^2 - \eta^2 - \eta^2\}$ Me₂Si(CH₂)₂PPh₂}(PMe₃)₃ (1)⁵ not only catalyzes the redistribution of hydrodisilanes but also forms a donor-stabilized bis(silylene)iridium complex, i.e., the stabilized form of the silyl(silylene) complex. Treatment of 1 with 1 equiv. HSiMe₂SiMe₃ at room temperature gave a hydrido(disilanyl)iridium(III) complex Ir(H)(SiMe₂SiMe₃) $\{\eta^2$ -Me₂Si(CH₂)₂PPh₂ $\{PMe_3\}_2$ (2) (eq 1).⁶ Recrystallization of 2 from toluene-hexane afforded colorless crystals of 2 in 89% yield. The ¹H, ²⁹Si, and ³¹P NMR data established that 2 possesses three phosphorous atoms in a *fac*-configuration as in eq 1. In the presence of MeOH, 2 was converted, on heating to 45 °C for 2 h, to Ir(H)(SiMe₂OMe){ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₂ (3)⁷ in 73% isolated yield (eq 2),⁸ although 2 was thermally stable at this temperature in the absence of MeOH. In the ¹H NMR spectrum, a signal of SiOMe appears as a singlet at 3.45 ppm. A plausible mechanism is illustrated in Scheme 1: The dissociation of a PMe₃ ligand followed by the reversible 1,2-silyl-shift gives a silyl(silylene) intermediate **A**. MeOH is known to work as an efficient trapping agent of silylene complex to give a hydrido(methoxysilyl) complex.⁹ Therefore, MeOH adds to the Ir=Si double bond to give a seven-coordinate iridium(V) intermediate **B**, which then undergoes the reductive elimination of Me₃SiH¹⁰ and ligation of PMe₃ to give 3. To confirm the existence of a silyl-silylene intermediate A, complex 1 was allowed to react with HMe₂SiSiMe₂OMe. The reaction proceeded cleanly at 45 °C for 8 h to give hydridobis(silylene) complex 4 (eq 3).^{11,12} The geometry of 4 can be uniquely determined by the NMR data. The ³¹P NMR spectrum shows an AX pattern at -60.6 ppm and 32.0 ppm (J(PPcis) = 28.9 Hz), which is consistent with the geometry as shown in eq 3. In the ²⁹Si NMR spectrum, the signals of two silylene ligands appeared inequivalently at 62.8 ppm (dd, J(SiPtrans) = 135.9 Hz, J(SiPcis) = 11.8 Hz) and 63.1 ppm (dd, J(SiPtrans) = 136.9 Hz, J(SiPcis) = 13.0 Hz), which are shifted to significantly downfield from those of previously reported silyliridium compounds.^{5,9b,13} Moreover, the upfield shift of the ¹H NMR signal for the SiOMe group (2.77 ppm) is characteristic of methoxy-bridged bis(silylene) complexes.¹⁴ 1 $$\xrightarrow{+HMe_2SiSiMe_2OMe}$$ $\xrightarrow{Me_2Sir}$ \xrightarrow{OMe} $\xrightarrow{Sim_2SiMe_2OMe}$ $\xrightarrow{HPh_2PMe_3}$ $\xrightarrow{Ph_2PMe_3}$ $\xrightarrow{HPh_2PMe_3}$ The formation of **4** can be also explained by the mechanism involving the 1,2-silyl-shift to the iridium center as shown in Scheme 1. In the case of HMe₂SiSiMe₂OMe, a silyl(silylene) intermediate corresponding to **A** can be stabilized by the bridging methoxy group to give a bis(silylene) complex **4**. Reaction of 1 with 5 equiv. HPhMeSiSiMe₃ was carried out at room temperature for 2 h. Complex 1 reacted with 1 equiv. HPhMeSiSiMe₃ to give 5 via the rearrangement of substituents on a disilanyl ligand (eq 4).¹⁵ A small amount of HMe₂SiSiMe₂Ph was also detected spectroscopically. The formation of 6, a simple oxidative addition product, was confirmed in the course of the reaction, but 6 finally disappeared. 16 Furthermore, thermolysis of this solution at 45 °C underwent the rearrangement of hydrodisilane to give an isomeric mixture of HPhMeSiSiMe3 and HMe2SiSiMe2Ph. After 5 days, the molar ratio of HPhMeSiSiMe3 to HMe₂SiSiMe₂Ph became 2:3, and 5 finally decomposed.¹⁷ We treated HMe2SiSiMe2Ph under the same conditions in the presence of 1, which resulted in the formation of a mixture of HPhMeSiSiMe₃ and HMe₂SiSiMe₂Ph in the ratio of 2:5. The decomposition of 5 formed in the reaction was also confirmed spectroscopically.¹⁷ Each reaction led to the isomeric mixture of hydrodisilane in the different ratio. This means that an active catalyst 518 decomposed before achieving the equilibrium.17 This isomerization reactions can be explained by the mechanism shown in Scheme 2. This mechanism also involves the generation of a silyl(silylene) intermediate, which causes a 1,3-Me-shift and 1,2-silyl-shift. The resulting disilanyl complex eliminates an isomeric hydrodisilane. To detect the silyl-silylene intermediate in Scheme 2, we employed HMe(MeO)SiSiMe₃ instead of HPhMeSiSiMe₃. Thermolysis of 1 in the presence of HMe(MeO)SiSiMe₃ led to the clean formation of 4. This apparently demonstrates that the skeletal rearrangement of hydrodisilanes take place *via* the silyl(silylene) intermediate, which causes the 1,3-Me-shift as shown in Scheme 2. In this paper, we firstly succeeded in the isolation of a donorstabilized silyl(silylene) species, which is a stabilized form of a key intermediate formed in the transition-metal-mediated redistribution of substituents of silicon atoms. ## References and Notes - 1 H. K. Sharma and K. H. Pannell, Chem. Rev., 95, 1351 (1995). - K. H. Pannell, J. Cervantes, C. Hernandez, J. Cassias, and S. Vincenti, Organometallics, 5, 1056 (1986). H. Tobita, K. Ueno, and H. Ogino, Bull. Chem. Soc. Jpn., 61, 2979 (1988). - 3 K. H. Pannell, M. Brun, H. Sharma, K. Jones, and S. Sharma, Organometallics, 13, 1075 (1994). - 4 K. Tamao, G. Sun, and A. Kawachi, J. Am. Chem. Soc., 117, 8043 (1995). - 5 M Okazaki, H. Tobita, and H. Ogino, Organometallics, 15, 2790 (1996). - (1996). Selected data for 2: 1 H NMR (300 MHz, C₆D₆) δ -12.78 (dt, J(HPtrans) = 105.1 Hz, J(HPcis) = 17.1 Hz, 1H, IrH). 29 Si NMR (59.6 MHz, C₆D₆) δ -51.3 (ddd, J(SiPtrans) = 115.6 Hz, J(SiPcis) 11.4, 12.7 Hz, IrSiMe₂SiMe₃), -13.6 (t, J(SiPcis) = 11.4 Hz, SiMe₃), 10.5 (ddd, J(SiPtrans) = 116.2 Hz, J(SiPcis) = 11.5, 7.7 Hz, IrSiMe₂CH₂). ³¹P NMR (121.5 MHz, C₆D₆) δ -69.4 (t, J(PPcis) = 23.7 Hz, PMe₃), -61.4 (dd, J(PPcis) = 23.7, 17.3 Hz, PMe₃), 27.6 (dd, J(PPcis) = 17.3, 23.7 Hz, PPh₂). Anal. Found: C, 43.29; H, 7.00%. Calcd for C₂7H₅4IrP₃Si₃: C, 43.35; H, 7.28%. Selected data for 3: ¹¹H NMR (300 MHz, C₆D₆) δ -12.82 (dt, Compared to the Selected data for 3: ¹H NMR (300 MHz, C₆D₆) δ -12.82 (dt, J(HPtrans) = 99.0 Hz, J(HPcis) = 18.0 Hz, 1H, IrH), 3.45 (s, 3H, OMe). ³¹P NMR (121.5 MHz, C₆D₆) δ -65.5 (dd, J(PPcis) = 23.1, 25.5 Hz, PMe3), -59.9 (dd, J(PPcis) = 20.2, 25.5 Hz, PMe3), 25.6 (dd, J(PPcis) = 20.2, 23.1 Hz, PPh₂). Anal. Found: C, 42.94; H, 7.01%. Calcd for C₂5H4gIrOP₃Si₂: C, 42.53; H, 6.85%. Formation of Me₃SiH was confirmed by ¹H NMR spectroscopy. ¹H 8 Formation of Me₃SiH was confirmed by ¹H NMR spectroscopy. ¹H NMR data of Me₃SiH (300 MHz, C₆D₆) δ 4.16 (sep., *J*(HH) = 3.6 Hz, 1H, SiH), 0.00 (d, 9H, SiMe₃). a) K. Ueno, H. Tobita, S. Seki, and H. Ogino, Chem. Lett., 1993, 1723. b) M. Okazaki, H. Tobita, and H. Ogino, Chem. Lett., 1996, 477. - 10 There is another possibility that **B** eliminates HSiMe₂OMe instead of HSiMe₃, although the formation of HSiMe₂OMe was not observed in the ¹H NMR spectrum. This is attributable to the existence of the electron-withdrawing methoxy group on the silicon atom. An electron-withdrawing group on a silicon atom is known to strengthen a M-Si bond by increasing M-Si π-honding involving Si d or σ* orbital - bond by increasing M-Si π -bonding involving Si d or σ^* orbital. 11 Selected data for 4: ^1H NMR (300 MHz, C₆D₆) δ -9.88 (dd, J(HPcis) = 14.3, 19.7 Hz, 1H, IrH), 2.77 (s, 3H, SiOMe). ^{29}Si NMR (59.6 MHz, C₆D₆) δ 12.5 (dd, J(SiPcis) = 9.2, 11.7 Hz, silyl), 62.8 (dd, J(SiPtrans) = 135.9 Hz, J(SiPcis) = 11.8 Hz, silylene), 63.1 (dd, J(SiPtrans) = 136.9 Hz, J(SiPcis) = 13.0 Hz, silylene). ^{31}P NMR (121.5 MHz, C₆D₆) δ -60.6 (d, J(PPcis) = 28.9 Hz, PMe₃), 32.0 (d, PPh₂). Exact mass (70 eV, DEI) m/z Calcd for C₂4H₄5IrOP2Si3: 688.1883. Found: 688.1889. - 12 At room temperature, the reaction of 1 and HMe₂SiSiMe₂OMe gave Ir(H)(SiMe₂SiMe₂OMe){ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₃ corresponding to 2. Spectroscopic data are similar to those for 2. - to 2. Spectroscopic data are similar to those for 2. 13 M. Okazaki, Y. Kawano, H. Tobita, S. Inomata, and H. Ogino, Chem. Lett., 1995, 1005. - 14 a) H. Tobita, K. Ueno, M. Shimoi, and H. Ogino, J. Am. Chem. Soc., 112, 3415 (1990). b) H. Tobita, H. Wada, K. Ueno, and H. Ogino, Organometallics, 13, 2545 (1994). c) T. Takeuchi, H. Tobita, and H. Ogino, Organometallics, 10, 835 (1991). - Ogino, Organometallics, 10, 835 (1991). 15 Selected data for 5: ¹H NMR (300 MHz, C₆D₆) δ -12.79 (dt, J(HPtrans) = 104.4 Hz, J(HPcis) = 16.7 Hz, 1H, IrH). ²⁹Si NMR (59.6 MHz, C₆D₆) δ -51.2 (ddd, J(SiPtrans) = 119.0 Hz, J(SiPcis) = 11.3, 12.8 Hz, IrSiMe₂SiMe₂Ph), -16.0 (t, J(SiPcis) = 11.8 Hz, SiMe₂Ph), 10.3 (ddd, J(SiPtrans) = 115.6 Hz, J(SiPcis) = 7.5, 11.4 Hz, IrSiMe₂CH₂). ³¹P NMR (121.5 MHz, C₆D₆) δ -69.6 (t, J(PPcis) = 23.8 Hz, PMe₃), -61.9 (dd, J(PPcis) = 17.1, 23.8 Hz, PMe₃), 27.5 (dd, J(PPcis) = 17.1, 23.8 Hz, PPh₂). Anal. Found: C, 47.20; H, 6.93%. Calcd for C₃2H₅6IrP₃Si₃; C, 47.44; H, 6.97%. - 16 Complex **6** is a mixture of diastereomers **6a** and **6b**. 31 P NMR (121.5 MHz, C₆D₆) data for **6a**: δ 28.1 (dd, J(PPcis) = 16.3 Hz, 24.2 Hz, PPh₂), -63.5 (dd, J(PPcis) = 16.3, 24.2 Hz, PMe₃), -72.6 (t, J(PPcis) = 24.2 Hz, PMe₃). **6b**: 29.4 (dd, J(PPcis) = 17.1, 23.2 Hz, PPh₂), -62.5 (dd, J(PPcis) = 17.1, 23.2 Hz, PMe₃). **71**.8 (t, J(PPcis) = 23.2 Hz, PMe₃). - 17 Decomposition of **5** may be attributable to the reaction with a small amount of H₂O or thermal evolution of the SiR₂ moiety. The decomposition resulted in the formation of *fac*-[Ir(H)(SiMe₃){η²-Me₂Si(CH₂)₂PPh₂}(PMe₃)₂], *fac*-[Ir(H)(SiMe₂Ph){η²-Me₂Si(CH₂)₂-PPh₂}(PMe₃)₂], and some unidentified products. - PPh₂}(PMe₃)₂), and some unidentified products. 18 In the presence of an isolated 5, the catalytic isomerization of the hydrodisilane, HPhMeSiSiMe₃ or HMe₂SiSiMe₂Ph, also took place in a similar manner. This means that 5 is one of active catalytic species.