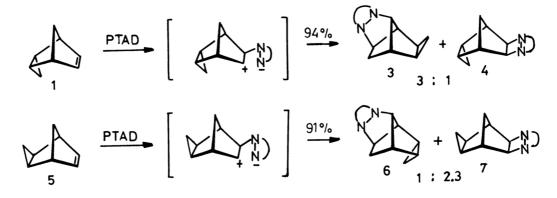

UNUSUAL CYCLOADDITIONS OF 4-PHENYL-1,2,4-TRIAZOLIN-3,5-DIONE TO ENDO- AND <u>EXO</u>-TRICYCLO[3.2.1.0^{2,4}]OCT-6-ENES

Ihsan ERDEN

University of Nevada, Department of Chemistry, Reno, Nevada 89557, USA


4-Phenyl-1,2,4-triazolin-3,5-dione readily cycloadds to endo- and exo-tricyclo-[$3.2.1.0^{2,4}$]oct-6-enes to give Δ^{1} -1,2-diazetines besides skeletally rearranged products. All adducts can be converted to the respective azo compounds which exhibit some unusual thermal and photochemical behavior.

Tetracyanoethylene reacts with endo-tricyclo[3.2.1.0^{2,4}]oct-6-ene ($\underline{1}$) with cyclopropane ring opening and subsequent 1,2-alkyl shift to give the adduct $\underline{2}^{1}$. On the other hand, 4-phenyl-1,2,4-

triazolin-3,5-dione (PTAD) was reported to react with $\underline{1}$ only at elevated temperatures to afford complex product mixtures, which could not be characterized¹⁾. We have previously shown that PTAD cycloadds to certain strained polycyclic olefins via dipolar intermediates to supply cyclic urazoles with skeletal rearrangements in high yields^{2,3,4)}. In order to gain more insight into the mechanistic features of this intriguing cycloaddition reaction, it is of interest to establish whether and to what extent a cyclopropyl group, annelated to a bicyclic framework, affects the fate of the initial zwitterionic intermediate.

Endo-tricyclo[3.2.1.0^{2,4}]oct-6-ene (1) in methylene chloride reacted with PTAD at room temperature within 8 hours to give an almost quantitative yield (94%total) of a 3:1 mixture of two products which were separated by column chromatography (SiO₂, CH₂Cl₂). They were unequivocally characterized on the basis of their 270 MHz ¹H-NMR spectra (see Table 1) and their chemical transformations (see below). The surprising formation of the [2+2]- adduct 4 suggests a certain stabilization of the carbenium ion in the initial ionic intermediate through the remote cyclopropane ring, since $[\pi^{2s}+\pi^{2s}]$ -cycloaddition is precluded by the orbital symmetry rules of Woodward and Hoffmann⁵⁾. Examination of the photoelectron spectra of homonorbornadienes reveals a considerably stronger interaction of the cyclopropyl group with the remote double bond

in the <u>exo</u>-isomer than in the <u>endo</u>-isomer⁶). Hence, <u>exo</u>-tricyclo[$3.2.1.0^{2,4}$]oct-6-ene ($\underline{5}$) should supply considerably more [2+2]-adduct than $\underline{1}$. Indeed, reaction of PTAD with $\underline{5}$ afforded a 1:2.3 mixture of $\underline{6}$ and $\underline{7}$. The dramatic change of the ratio of the products in favor of the [2+2]-adduct in the <u>exo</u>-isomer $\underline{5}$ points to a more effective homoconjugative interaction of the <u>exo</u>-cyclopropane ring with the developing carbenium ion, which suppresses the 1,2-alkyl shift to a greater extent and hence favors the 1,2-addition⁷).

Alkaline hydrolysis and decarboxylation of the adducts in isopropanol with potassium hydroxide, oxidation of the respective hydrazides with Cu(II) chloride, and subsequent treatment of the brick-red Cu(I) complexes with aqueous alkali⁸⁾ furnished in high yields the 1,2-pyrazolines $\underline{11}$ and $\underline{12}$, and the Δ -1,2-diazetines $\underline{8}$ and $\underline{9}$, respectively. For further studies they were purified by preparative gas chromatography.

Photolysis of <u>8</u> (ether, Corex filter), as well as thermolysis in a sealed tube at 130[°]C in CCl₄, gave <u>1</u> as the sole product. In contrast, photolysis of <u>9</u> gave rise to <u>10</u> quantitatively, whereas thermolysis (130[°]C, CCl₄) led to <u>5</u>. These latter reactions parallel the reported transformations of 3,4-diaza[4.2.1.0^{2,5}]nona-3,7-diene⁹).

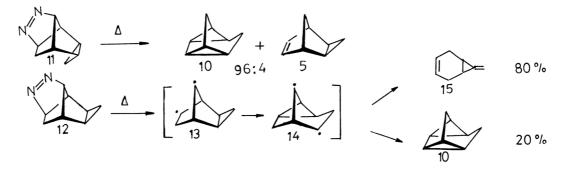
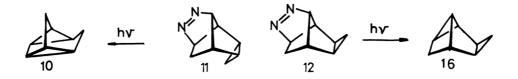

The pyrazolines 11 and 12 proved to be considerably more stable thermally. Thus, gas phase pyrolysis of 11 (350°C, 0.01 Torr) gave rise to a mixture of 10 and 5 in a ratio of 96:4 (total

Table l.	Spectroscopic data of new compounds ^{a)}	
Compound (m.p.)	¹ H-NMR ⁽²⁷⁰ MHz, CDC1 ₃ , TMS)	IR (KBr _l or film) (cm ⁻)
(1 7 6°C)	0.28(m,1H);0.55(m,1H); 1.01(m,2H); 1.59(m,2H); 2.66(br.s,1H); 2.70(br.s,1H); 3.83(br.s,1H); 4.40(br.s,1H); 7.17-7.42(m,5H).	3050,2940(С-Н) 1770,1700(С=О)
<u>4</u> (205.5°C)	0.64(m,2H); 1.44(m,2H); 2.28(d,J=9.6 Hz,1H); 2.61(d,J=9.6 Hz, 1H); 2.65(br.s,2H); 4.28(s,2H); 7.19-7.47(m,5H).	3050,2960(С-Н) 1780,1715(С=О)
(182°C)	0.99(m,1H); 1.58(m,1H); 1.71-1.87(m,3H); 1.91(m,1H); 2.13(m,1H); 2.60(m,1H); 4.22(m,1H); 4.67(m,1H); 7.21-7.56(m,5H).	3045,2965(С-Н) 1772,1710(С=О)
<u>7</u> (192°C)	0.29(m,1H); 0.57(m,2H); 0.71(m,1H); 1.22(d, J=11.6 Hz,1H); 1.91(d,J=11.6 Hz,1H);2.75(s,2H); 4.48(s,2H); 7.23-7.58(m,5H).	3050,2970(С-Н) 1780,1710(С=О)
<u>8</u>	0.51(m,2H); 1.48(m,2H); 1.55(d,J=10.0 Hz,1H); 1.61(d,J=10.0 Hz, 1H); 2.42(br.s,2H);4.38(s,2H).	3055,2970(C-H) 1540(N=N)
9	0.21(m,1H); 0.58(m,1H); 0.67(d,J=12.0 Hz,1H); 0.70(m,2H); 0.91(d,J=12.0 Hz,1H); 2.52(s,2H); 4.44(s,2H)	3060,2980(C-H) 1550(N=N)
<u>11</u>	0.74(m,1H); 1.36(m,1H); 1.51(m,1H); 1.64(m,2H); 1.91(m,2H); 2.24(m,1H); 4.69(m,1H); 4.94(m,1H).	3045,2955(С-Н) 1535(N=N)
12	0.30(m,1H); 0.55(m,1H); 1.00(m,2H); 1.20(m,2H); 2.28(m,2H); 4.50(m,1H); 4.87(m,1H).	3050,2960(С-Н) 1530(N=N)
<u>16</u>	0.10(m,1H); 0.25(m,1H); 0.92(m,1H); 1.10(m,1H); 1.33(m,1H); 1.46(m,1H); 1.61(m,2H); 2.25(m,1H); 2.46(m,1H).	3070,3040,2960 2925(С-Н)


a) All the new compounds gave satisfactory elemental analysis and/or mass spectrometrically determined molecular weights.

yield 92%).

Under the same conditions, however, 12 behaved very differently, giving 7-methylene bicyclo-[4.1.0^{1,6}]hept-3-ene (15)¹⁰) predominantly (80%) plus 20% of 10 (total yield 82%).

This result can be rationalized by the intermediacy of the diradicals 13 and 14.

The different arrangement of the cyclopropane ring in $\underline{11}$ and $\underline{12}$ made itself noticable also in the photochemical decomposition of both compounds: whereas $\underline{12}$ (ether, Corex filter) smoothly afforded the novel tetracyclic compound $\underline{16}$, the isomeric $\underline{11}$ gave exclusively $\underline{10}$.

References and Notes

- M.A.Battiste, J.M.Coxon, R.G.Posey, R.W.King, M.Mathew and G.J.Palenik, <u>J.Amer.Chem.Soc.97</u>, 945 (1975).
- I.Erden, O.de Lucchi, W.Adam, <u>Angew.Chem.91</u>, 512 (1979); <u>Angew.Chem.Int.Ed.Engl.18</u>, 468 (1979).
- 3) I.Erden, M.Balci, Tetrahedron Lett. 1825 (1980).
- 4) I.Erden, A.de Meijere, Tetrahedron Lett. 1837 (1980).
- R.B.Woodward, R.Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie/Academic Press (1970).
- 6) P.Bischof, E.Heilbronner, H.Prinzbach, H.D.Martin, <u>Helv.Chim.Acta</u> 54, 1072 (1971).
- 7) It has been suggested by <u>Prof.M.A.Battiste</u>, University of Florida, that the observed change in the product ratio is also consistent with the known lesser tendency of 5,6-<u>exo</u>-cycloalkyl fused norbornyl cations to undergo Wagner-Meerwein rearrangements.
- 8) L.A.Paquette, M.J.Wyvratt, H.C.Berk, R.F.Moerck, J.Amer.Chem.Soc 100, 5645 (1978).
- 9) N.Rieber, J.Alberts, J.A.Lipsky, D.M.Lemal, J.Amer.Chem.Soc.91, 5668 (1969).
- 10) R.D.Miller, D.L.Dolce, Tetrahedron Lett. 4403 (1973).

(Received December 8, 1980)