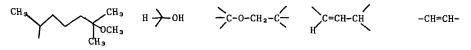
STRUCTURES OF MOMORDICOSIDES F_1 , F_2 , G, I, K AND L, NOVEL CUCURBITACINS IN THE FRUITS OF MOMORDICA <u>CHARANTIA</u> L.

Hikaru Okabe[°], Yumi Miyahara and Tatsuo Yamauchi Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Fukuoka City, Japan 814-01

Abstract: Two bitter cucurbitacins, momordicosides K and L, and four non-bitter cucurbitacins, momordicosides F_1 , F_2 , G and I, were isolated from the immature fruits of <u>Momordica charantia</u> L. (Cucurbitaceae) and their structures were elucidated.

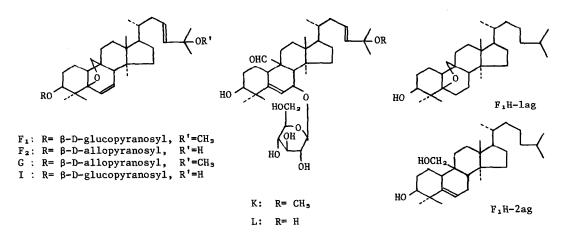
Cucurbitacins comprise a group of triterpenes, most of which are bitter principles commonly distributed in the cucurbitaceous plants. The fruits of <u>Momordica charantia</u> L. (Cucurbitaceae) taste bitter, and had been expected to contain cucurbitacins.


The triterpenoid constituents in this plant have been extensively investigated in this laboratory, and we reported the isolation and structures of five non-bitter cucurbitacins designated as momordicosides A~E isolated from the seeds.¹⁾ They are the second example of the rare cucurbitacins which have no oxygen function at C_{11} .²⁾

In this paper, we wish to report the structures of two bitter glycosides, momordicosides K and L, and four non-bitter glycosides, momordicosides F_1 , F_2 , G and I, isolated from the immature fruits, which are the novel cucurbitacins differ from ones hitherto reported.

The MeOH extractive of the fresh fruits was washed with water, and from the waterinsoluble material, momordicosides were isolated in crystalline form by column chromatography.

F1:	C37H6008•2.5H20	mp 198-	203° [a]	-111.0° [0]	200 -82800°(MeOH)	yield 0.003%
F2:	C ₃₆ H ₅₈ O ₈ •H ₂ O	155-	158° [α] ₁	-96.5°		0.0003
G:	$C_{37}H_{60}O_{8} \bullet 2H_{2}O$	183-	187° [α] _Ι	-107.3°		0.0009
1:	C ₃₆ H ₅₈ O ₈ •H ₂ O	210-	216° [α]	-110.2°		0.0006
К:	$C_{37}H_{60}O_{9} \cdot 1/2H_{2}O$	236-	237° [α]	+63.3° [0]] ₂₀₈ +58500°(MeOH)	0.0018
L:	$C_{36}H_{58}O_{9} \bullet 2H_{2}O$	227-	232° [α]	+57.3°		0.0002


Enzymatic hydrolysis of F₁ using the crude hesperidinase provided F₁-aglycone (C₃₁H₅₀O₃, mp 139-140°, [α]_D -90.6°, [θ]₁₉₉ -43500° (MeOH)) and D-glucose. ¹H NMR data³ [δ 1.31(6H, s), 3.22 (3H, s, OCH₃), 3.60 (H,m), 3.55, 3.67(1H each, d, J=9 Hz), 5.60 (2H, br.s), 5.61 (H, dd, J=10, 4 Hz), 6.14 (H, dd, J=10, 2 Hz)] and ¹³C NMR data³ (Table) of F₁-aglycone and ¹³C NMR data of F₁ suggested that F₁ is a mono- β -D-glucopyranoside of a tetracarbocyclic five-ring triterpene having partial structures presented below.

momordicosides	quat. C	oxygen-bearing C	olefinic C
F ₁	39.0, 45.2 45.4, 48.8	 (a) 52.2q, 74.8s, 80.0t, 85.4d, 85.8s (s) 63.0t, 71.7d, 75.7d, 78.3d(x2) 106.8d 	128.3d, 129.9d 134.1d, 137.6d
G	38.9, 45.1 45.3, 48.7	 (a) 52.1q, 74.7s, 79.9t, 84.9d, 85.7s (s) 63.1t, 69.0d, 72.3d, 72.8d, 75.8d 103.6d 	128.0d, 129.6d 133.8d, 137.3d
I-aglycone	37.5, 45.4 45.6, 48.7	52.1q, 74.7s, 76.2d, 79.8t, 87.5s	128.3d, 131.2d 132.4d, 137.6d
F ₂	39.0, 45.2 45.4, 48.8	 (a) 69.7s, 80.1t, 85.1d, 85.9s (s) 63.3t, 69.2d, 72.4d, 73.0d, 76.1d 103.8d 	124.1d, 129.9d 134.1d, 141.7d
I	39.0, 45.2 45.3, 48.8	<pre>(a) 69.7s, 80.0t, 85.4d, 85.8s (s) 63.0t, 71.8d, 75.7d, 78.3d(x2) 106.8d</pre>	124.1d, 129.9d 134.1d, 141.6d
-aglycone	37.6, 45.4 45.6, 48.8	69.7s, 76.2d, 79.8t, 87.6s	124.1d, 131.3d 132.4d, 141.7d
K*	41.8 45.6, 47.9	 (a) 50.0q, 71.5d, 74.7s, 74.7d, 207.0d (s) 62.7t, 71.7d, 75.4d, 78.3d, 78.5d 101.5d 	121.9d, 128.0d 137.3d, 147.1s
L*	41.8 45.5, 47.9	 (a) 69.6s, 71.5d, 74.7d, 206.9d (s) 62.8t, 71.5d, 75.4d, 78.5d(x2) 101.4d 	122.0d, 123.8d 141.3d, 147.2s
'1H-lag	38.6, 46.1 48.5, 49.9	76.8d, 78.5t, 89.9s	
' ₁ H-2ag	39.6, 41.7 46.4, 49.4	65.5t, 76.0d	120.4d, 142.9s

Table ¹³C NMR Chemical Shifts of Momordicosides and Their Aglycones [(a): aglycone moiety, (s): sugar moiety]

* The 4th quaternary carbon signal may overlap probably on the signal at δ 41.8.

When F_1 -acetate was hydrogenated over PdO in EtOH, two products (F_1H-1 and F_1H-2) having no methoxyl group were obtained.⁴⁾ They were separately saponified and methanolyzed to give respective aglycones, F_1H-lag ($C_{30}H_{52}O_2$, mp 133-134°, $[\alpha]_D$ +31.4°) and F_1H-2ag ($C_{30}H_{52}O_2$ • H_2O , mp 169-170°, $[\alpha]_D$ +40.5°). The ¹H NMR and ¹³C NMR spectra indicated that F_1H-lag is a saturated alcohol in which the ether linkage is retained. F_1H-2ag is a diol which has a primary hydroxyl group and a trisubstituted double bond which were derived by reductive cleavage of the ether ring and migration of the double bond. The chemical shift of the olefinic proton (65.76, br.d, J=6 Hz) and its signal pattern are similar to those (85.61, br.d, J=5.5 Hz) of cucurbit-5-ene-3 β ,22(S),23(R),24(R),25-pentaol (A-aglycone)¹) and the ¹³C NMR chemical shift of olefinic and quaternary carbons are almost the same with those of A-aglycone¹(olefinic C: 119.1d and 143.0s. quaternary C: 34.8, 41.6, 46.8 and 49.2) except for the chemical shift of the quaternary carbon to which the hydroxymethyl group is linked.

The keto-aldehyde ($C_{30}H_{48}O_2$, EI-MS:m/z 440 (M⁺), mp 123-125°, IR(KBr): 1718, 1725(sh.) cm⁻¹) obtained by oxidation of F₁H-2ag with pyridinium chlorochromate in CH₂Cl₂ showed a negative CD spectrum ($[\theta]_{280}$ - 3400°(dioxane))⁵). These data indicate that F₁H-2ag is cucurbit-5-ene-3 β ,19-diol, and hence, F₁ is a 3-O- β -D-glucopyranoside of 5,19-epoxy-25-methoxy-5 β -cucurbita-6,23-dien-3 β -ol, and this formulation is well supported by CD curves of F₁ and F₁-aglycone which showed [θ]₂₀₀-82800° and [θ]₁₉₉-43500°, respectively.⁶)

G exhibited almost the same ¹H NMR and ¹³C NMR spectra with those of F₁ except for signals of the sugar moiety. When G-permethylate was hydrogenated and methanolyzed, F₁H-lag and a methylated sugar were provided. The latter was identified as methyl 2,3,4,6-tetra-0-methyl β -D-allopyranoside by its specific rotation (-14.7°)⁷⁾ and by examination of the ¹H NMR spectrum [δ 4.60(H₁, d, J=8 Hz), 2.99(H₂,dd, J=8, 3 Hz), 4.00 (H₃, t, J=3, 2 Hz), 3.22 (H₄, dd, J=2, 12 Hz), 3.80 (H₅,m)]. The J-value (8 Hz) of the anomeric proton of the sugar moiety of G-permethylate indicates that D-allopyranose is in β -configuration.

Thus, G is the 3-O- β -D-allopyranoside of F₁-aglycone.

 F_2 and I are considered to be the C_{25} -OH derivatives corresponding to G and F_1 , respectively, because they showed similar ¹H NMR spectra to those of G and F_1 , except that they exhibited a deshielded signal (§1.53) due to two methyl groups on C_{25} and no methoxyl signal, and also because the ¹³C NMR signal of C_{25} was shifted up-field ca 5 ppm from those of G and F_1 .

Their relationship to G and F₁ were established by converting them into permethylates of G and F₁, respectively. Therefore, F₂ is the 3-O- β -D-allopyranoside of 5,19-epoxy-5 β -cucurbita-6,23-diene-3 β ,25-diol, and I is its 3-O- β -D-glucopyranoside.

K is suggested by ¹H NMR and ¹³C NMR data to be a mono- β -D-glucopyranoside of a tetracyclic triterpene having a tertiary formyl group (δ 10.43, s), a disubstituted and a trisubstituted double bonds, two secondary hydroxyl groups, and a tertiary methoxyl group at the terminal of the side chain, and L to be the corresponding C₂₃-OH derivative. The same permethylate was obtained when K and L were separately methylated.

The aglycone (Lag)($C_{30}H_{40}O_4$, mp 190-193°) of L showed ¹H NMR signals of one carbinyl proton (H, δ 4.36, br.d, J=5 Hz) coupled with an olefinic proton (H, δ 6.25, br.d, J=5 Hz), one carbinyl proton (H, δ 3.81, br.s) and two olefinic protons (2H, δ 5.91, br.s). The ¹H NMR spectrum of L also depicted the signal of a carbinyl proton at δ 3.81 and this signal was

shifted down-field (ca δ 5.0) by acetylation. This fact indicates that the glucose is linked not to the isolated hydroxyl group, but to the one allylic to the trisubstituted double bond.

NaBH₄ reduction of K provided a primary alcohol Kred (mp 195-197°, $[\alpha]_D$ +60.1°, $[\theta]_{205}$ +87900° (MeOH)), which gave F₁-aglycone on treatment with 50% AcOH in MeOH at 38°.

When Kred was hydrogenated over PdO, the glucopyranosyl group was eliminated and two compounds identical with F_1H -lag and F_1H -2ag were yielded. F_1 -aglycone is not the genuine aglycone of Kred, and it is considered to be derived from the glycoside by bond fission between the aglycone-C and the glucose-O giving an intermediate C, carbonium cation, subsequent migration of the double bond and then formation of the linkage between C, carbonium cation and the oxygen of the primary hydroxyl group. Formation of F_1H -lag by hydrogenation is also supposed to be initiated by cleavage of C₇-O bond, followed by migration of the double bond and formation of the ether ring, reductive opening of which leads to F_1H -2ag.

The orientation of C₇-hydroxyl group was determined as β from the positive CD curve of Kred⁶⁾ and from the J-values(5 Hz) of C₆-H and C₇-H of Lag.⁸⁾

These data and consideration have led us to the conclusion that Kred is a 7-O- β -D-glucopyranoside of 25-methoxy-cucurbita-5,23-diene-3 β ,7 β ,19-triol, and K and L are 7-O- β -D-glucopyranosides of 19-oxo-25-methoxy-cucurbita-5,23-diene-3 β ,7 β -diol and its C₂₅-OH derivative, respectively.

Momordicosides F_1 , F_2 , G and I are the first cucurbitacins having 5 β -cucurbitane skeleton occurred in nature, and K and L are noted as the new cucurbitacins having C₉formyl and 7-O- β -D-glucopyranosyl groups. Among momordicosides, G and F₂ are the first members of cucurbitacins having D-allose as a component sugar.

References and Notes

- H. Okabe, Y. Miyahara, T. Yamauchi, K. Miyahara and T. Kawasaki, Chem. Pharm. Bull., <u>28</u>, 2753 (1980): Y. Miyahara, H. Okabe and T. Yamauchi, ibid., <u>29</u>, 1561(1981)
- The first cucurbitacin having no oxygen function at C₁₁ is litsomentol (5α-cucurbit-24ene-3β,5α-diol) isolated from the bark of <u>Litsea tomentosa</u> Heyne (Lauraceae): T.R. Govindachari, N. Viswanathan and P. A. Mohamed, Tetrahedron, 27, 4991 (1971).
- 3) ¹H NMR and ¹³C NMR spectra were taken in pyridine-d, using tetramethylsilane as an internal standard(s: singlet, d: doublet, t: triplet, dd: double doublet, m: multiplet, br: broad).
- 25-Methoxycycloart-23-en-3β-ol provides cycloartanol on catalytic hydrogenation: C. Djerassi and R. McCrindle, J. Chem. Soc., <u>1962</u>, 4034.
- 5) R. Tschesche, G. Biernoth and G. Snatzke, Ann., 674, 196 (1964)
- 6) A. I. Scott and A. D. Wrixon, Tetrahedron , 27, 4787 (1971)
- 7) β-anomer: -19.0°, α-anomer: +148.5°(unpublished data reported by K. Mihashi et al. of this university at the 101st Annual Meeting of The Pharmaceutical Society of Japan, Kumamoto, April, 1981)
- 8) The signal of C₆-H of 3 β ,7 α ,11 β -triacetoxy-cucurbit-5-ene is reported as a broad singlet ($W_1/2$ 4 Hz) and that of C₇-H as a broad doublet (J=7 Hz).

(Received in Japan 4 September 1981)