CLAISEN CONDENSATIONS OF ESTERS OF N-HETEROCYCLIC ACIDS. CONDENSATIONS OF ETHYL ISOQUINOLINE-4-CARBOXYLATE

C. F. KOELSCH

Received September 8, 1944

Condensations of esters of N-heterocyclic acids with compounds containing active methylene groups have been of importance in syntheses of several alkaloids. The condensations have frequently proceeded unexpectedly well (14), and a survey of the field now indicates that in general such condensations (Table I) have given yields somewhat better than those obtainable using esters of aromatic acids under comparable conditions.

Whatever superiority as acceptors the heterocyclic esters show is doubtless to be referred to the electronegativity of the heterocyclic nucleus.¹ The following symbols indicate an analogy in this respect between an ester of the type under discussion and ethyl oxalate, an ester known to be exceptionally active as an acceptor.

It appeared of some interest to study the behavior of ethyl isoquinoline-4carboxylate in the Claisen reaction. In this molecule, the carbethoxyl group occupies a position of high electron density, as indicated by the preferential bromination of isoquinoline in the 4-position. Such a carbethoxyl group would be expected to be relatively inactive as an acceptor.² The present study has borne out this expectation. With ethyl acetate, ethylisoquinoline-4-carboxylate gave only 49% of crude I. With ethyl 1-benzoylpiperidine-4, β -propionate, there was obtained 68% of II, but this product was very impure, since on partial

¹ Craig and Hixon [J. Am. Chem. Soc., **53**, 4371 (1931)] have stated that, "The dissociation constants of the picolylamines" (α - and β -) "indicate the pyridyl radical to be almost as much more negative than the phenyl as the phenyl is more negative than the saturated aliphatic radicals."

It is also noteworthy in this connection that C-alkylation of ethyl α -pyridylacetate in the presence of alcoholic potassium ethoxide has been carried out (30).

² This effect, although probably less noticeable in the pyridine series, accounts for the early observation by Ferenczy (3) that the condensation of ethyl picolinate with acetone took place easily and gave a good yield of pyridoylacetone, whereas it required a careful attention to detail to obtain a satisfactory yield in the condensation of ethyl nicotinate with acetone.

ETHYL ISOQUINOLINE-4-CARBOXYLATE

TABLE I

Condensations of N-Heterocyclic Esters

METHYLENE COMPOUND	BASE AND CONDITIONS ^a	PRODUCT	vield, ^b %	REF
	Condensations with Ethyl Pic	olinate		
Acetone	NaOEt, benzene, 50° 1 hr.	diketone	75	2
Ethyl acetate	NaOEt, dry, 25° 24 hr.	keto ester	?	4
Ethyl acetate	NaOEt ^e , dry, 25° 24 hr.	keto ester	44	15
Ethyl acetate	Na, benzene, hydrol.	ketone	50	26
Ethyl acetate	NaOEt, dry, hydrol.	ketone	50	26
Ethyl acetate	KOEt, benzene, 80° 6 hr.	keto ester	55	33
Ethyl acetate	NaOEt, EtOAc, b. 10 hr., hydrol	ketone	50	41
Ethyl propionate	NaOEt, dry, 25° 24 hr.	keto ester	2	4
Ethyl butyrate	NaOEt, dry, 25° several days	5	trace	4
Ethyl succinate	NaOEt, benzene, b. 1 hr. hydrol. ^d	γ-keto ester	35	20
Ethyl ethoxyacetate	5	5	trace	30
Butyrolactone	Na, benzene, b. 2 hr.	keto lactone	79x	25
Butyrolactone	NaOEt, benzene, b. 2 hr.	keto lactone	90x	25
γ -Ethoxymethyl- γ - butyrolactone	Na, benzene, b. 2 hr.	keto lactone	80x	35
Pyrrolidone	NaOEt, benzene	keto lactam	68x	25
N-Methylpyrrolidone	NaOEt, benzene, b. 8 hr.	keto lactam	93x	19
Succinimide	5	5	3	25
N-Methylsuccinimide	Na, benzene, b. 15 hr.	keto imide	91	25
Co	ndensation with Ethyl 6-Methy	lpicolinate		
Ethyl acetate	NaOEt, dry, 25° 24 hr.	keto ester	?	4
Cond	ensations with Ethyl 3,5-Dime	thylpicolinate		
Ethyl propionate	NaOEt, benzene, b. 1 hr., hydrol.	ketone	52	31
Ethyl succinate	NaOEt, benzene, b. 1 hr., hydrol. ^d	γ-keto ester	50	31
	Condensations with Ethyl Nic	otinate		
Acetone	NaOEt, ether, 25° 12 hr.	diketone	55	3
Acetone	NaOEt, ether, 25° 1 hr.	diketone	45	22
Acetone	NaOEt, acetone, 56° 3 hr.	diketone	82	24
Acetone	NaOEt, xylene, 100° 4 hr.	diketone	63	27
Hexanone-2	NaOEt, xylene, 100° 4 hr.	diketone	46	27
4-Methylpentanone-2	NaOEt, xylene, 100° 4 hr.	diketone	70	27
Pinacolone	NaOEt, xylene, 100° 4 hr.	diketone	42	27
Heptanone-2	NaOEt, xylene, 100° 4 hr.	diketone	47	27
	NaOEt, xylene, 100° 4 hr.	?	0	27
			~	
Pentadecanone-2		diketone	70	27
	NaOEt, xylene, 100°4 hr. NaOEt, xylene, 100°4 hr.	diketone diketone	70 60	27 27

Ç. F. KOELSCH

METHYLENE COMPOUND	BASE AND CONDITIONS ^a	PRODUCT	vield, ^b %	REF
Conde	ensations with Ethyl Nicotinate	e-Continued		
Ethyl acetate	NaOEt, dry, 25° 24 hr.	keto ester	2	4
Ethyl acetate	NaOEt, dry, 100° 1.5 hr., hydrol.	ketone	70	16
Ethyl acetate	NaOEt, EtOAc, b. 6 hr.	keto ester	70	21
Ethyl acetate	NaOEt, dry, 77° 2.5 hr.	keto ester	49	24
Ethyl acetate	NaOEt, xylene, 100° 4 hr., hydrol.	ketone	87	27
Ethyl acetate	NaOEt, EtOAc, b. 10 hr., hydrol.	ketone	81	41
N-Methylpyrrolidone	NaOEt, benzene, b. 8 hr.	keto lactam	70	17
N-Benzoylpyrrolidone	NaOEt, benzene, b. 24 hr., hydrol.	myosmine	13	28
N-Methylpiperidone	NaOEt, ligroin, b. 24 hr.	keto lactam	31	14
N-Benzoylpiperidone	NaOEt, benzene, b. 24 hr.,	anabaseine	52x	29
3-Acetopyridine	hydrol. NaOEt, xylene, 100° 4 hr.	diketone	51	27
	densation with Ethyl 4-Methyl	 Inicotinate	1 1	
			90	10
Ethyl acetate	NaOEt, benzene, b. 5 hr., hydrol.	ketone	36	12
Conde	ensation with Ethyl 2,6-Dimetl	nylnicotinate		
Ethyl acetate	NaOEt, dry, 100° 6 hr., hydrol.	ketone	27.	39
Cond	ensation with Ethyl 6-Methoxy	vnicotinate		
N-Methylpiperidone	2	5	0	11
C	Condensations with Ethyl Isoni	cotinate		
Acetone	NaOEt, ether, 25° 48 hr.	diketone	55	5
Acetophenone	NaOEt, ether, 25° 48 hr.	diketone	2	5
Ethyl acetate	NaOEt, dry, 25° 24 hr.	keto ester	?	4
Ethyl acetate	NaOEt, EtOAc, b. 10 hr., hydrol.	ketone	80	41
Ethyl acetate	NaOEt, ether, b. 4 hr.	keto ester	54	45
(Condensations with Ethyl Quin	aldinate		
Benzyl cyanide	NaNH ₂ , ether, b. 30 min.	keto nitrile	79	6
N-Methylpyrrolidone	Na, benzene, b. 7 hr.	keto lactam	?	25
N-Methylsuccinimide	2	?	0	25
Conde	nsations with Ethyl Quinoline-	3-carboxylate		
Ethyl acetate	NaOEt, benzene, b. 12 hr.	keto ester	80	40
N-Methylpyrrolidone	NaOEt, benzene, b. 9 hr.	keto lactam	47	38
Ethyl N-benzoylhomo- cincholoiponate	NaOEt, benzene, hydrol.	ketone	70	40

TABLE I-Continued

	IABLE I-Communed			
METHYLENE COMPOUND	BASE AND CONDITIONS ⁴	PRODUCT	VIELD, ^b %	REF.
Condensation	ns with Ethyl 2-Methoxyquing	line-3-carboxyls	ate	
Ethyl acetate	NaOEt, benzene, b. 10 hr., hydrol.	ketone	32	40
Ethyl N-benzoylhomo- cincholoiponate	NaOEt, benzene, hydrol.	ketone	?	40
Co	ondensation with Ethyl Cinch	oninate		
Acetone	NaOEt, benzene, 60° 3 hr.	diketone	5	1
Ethyl acetate	NaOEt, benzene, b. 10 hr.	keto ester	5	7
Ethyl acetate	NaOEt, ether, b. 20 hr.	keto ester	85	45
Ethyl δ -(N-benzoyl-N- ethylamino)valerate	NaOEt, benzene, 65° 24 hr.	keto ester	58	14
Ethyl e-aminocaproate	NaOEt, benzene, b. 48 hr.	keto ester	17x	14
Ethyl «-benzoylamino- caproate	NaOEt, benzene, b. 48 hr.	keto ester	17	14, 3
Ethyl e-benzoylamino- caproate	Na, benzene	keto ester	34•	32
Ethyl ϵ -benzoylamino- caproate	NaNH ₂ , ¹ benzene, b. 7 hr.	keto ester	64	32
Ethyl ϵ -(N-benzoyl-N- methylamino)caproate	NaOEt, benzene, b. 48 hr.	keto ester	45	14
Ethyl tetrahydropyran $4, \beta$ -propionate	NaOEt, benzene, b. 16 hr., hydrol.	ketone	60	34
N-Methylpiperidone-2	NaOEt, ligroin, b. 12 hr.	keto lactam	60	11
N-Ethylpiperidone-2	NaOEt, ligroin, b. 12 hr.	keto lactam	63	11
Azepinone-2	NaOEt, benzene, ^o b. 48 hr.	? (mixture)	20	11
N-Methylazepinone-2	NaOEt, ligroin, b. 24 hr.	keto lactam	17	11
N-Benzoylazepinone-2	NaOEt, benzene, b. 24 hr.	keto lactam	30x	11
Ethyl 1-benzoylpiperidine- 4, β -propionate	NaOEt, benzene, b. 3.5 hr.	keto ester	66	13
Ethyl N-benzoylhomo- cincholoiponate	NaOEt, benzene, b. 15 hr.	keto ester	40	9

TABLE I-Continued

Condensations with Ethyl 2-Methylcinchoninate

CONU	choutions with hongi 2 moongi			
Ethyl acetate Ethyl cis-4-acetylamino- cyclohexylacetate	NaOEt, benzene, 80° 18 hr. ?	keto ester none	53	36 36
Condensat	ion with Ethyl 2-Phenylquinol	ine-4-carboxylat	e	
N-Methylpiperidone-2	NaOEt, benzene	keto lactam	23	14
Condensat	ion with Ethyl 2-Ethoxyquinol	ine-4-carboxylat	e	
Ethyl tetrahydropyran- 4, β -propionate	NaOEt, benzene, b. 15 hr., hydrol.	ketone	48	34

C. F. KOELSCH

METHYLENE COMPOUND	BASE AND CONDITIONS ^a	PRODUCT	VIELD ^b ,%	REF
(Condensations with Ethyl Qui	ninate		
Acetone	NaOEt, benzene, 80° 1.5 hr.	diketone	?	47
Ethyl acetate	NaOEt, benzene, b. 20 hr.	keto ester	56	8
Ethyl propionate	NaOEt, benzene, b. 20 hr.	keto ester	30	7
Ethyl ϵ -benzoylamino- caproate	NaNH ₂ , benzene, b. 7 hr.	keto ester	36	32
Ethyl e-benzoylamino- caproate	$NaNH_2$, toluene, b. 7 hr.	?	55	32
Ethyl ϵ -(N-benzoyl-N- methylamino)caproate	NaOEt, benzene, b. 48 hr.	keto ester	35	14
Ethyl <i>cis-</i> 4-acetylamino- cyclohexylacetate	NaOEt, benzene, 80° 20 hr.	keto ester	30	36
Ethyl tetrahydropyran- $4, \beta$ -propionate	NaOEt, benzene, b. 16 hr., hydrol.	ketone	40	34
N-Methylpiperidone-2	NaOEt, ligroin, b. 24 hr.	keto lactam	50	11
Azepinone-2	NaOEt, benzene, b. 48 hr.	keto lactam	3	14
Ethyl 1-benzoylpiperidine- 4, β -propionate	NaOEt, benzene, b. 4 hr.	keto ester	50	13
Ethyl 1-benzoylpiperidine- 4, β -propionate	NaOEt, dry, then hydrol.	ketone	90	42
Ethyl 1-benzoylpiperidine- $4, \beta$ -propionate	Na, benzene, b. 4 hr.	keto ester	75x	43
Ethyl N-benzoylhomo- cincholoiponate	NaOEt, benzene, b. ? hr.	keto ester	55	10
Ethyl N-benzoylhomo- cincholoiponate	NaOEt, dry, then hydrol.	ketone	63	18
Ethyl N-benzoylhomo- cincholoiponate	? then hydrol.	ketone	?	23
Ethyl N-benzoylhomo- meroquinenate	NaOEt, dry, 90° 15 hr.	keto ester	59	44

TABLE I-Continued

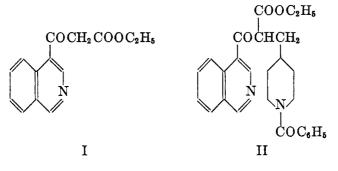
Condensation with Ethyl 6-Methoxyquinoline-8-carboxylate

Ethyl N-benzoylhomo-	NaOEt, dry, 80° 4 hr.	keto ester	64	37
cincholoiponate				

^a In several instances the reagents were allowed to stand at room temperature for some time and then heated; only the latter process has been recorded in the table. The letter "b." means boiled. Often a crude condensation product was not isolated, but simply hydrolyzed and decarboxylated by boiling it with hydrochloric or hydrobromic acid; this is indicated in the table by "hydrol."

^b The letter "x" refers to a crude product. Where yields in several similar experiments have been published in one place, only the highest has been recorded in the table.

^c A poorer yield was obtained using metallic sodium.


^d The hydrolysis product was then re-esterified.

"When methyl esters were used under the same conditions, a yield of 25% was obtained.

' Yields are greatly reduced by traces of nitrite in the sodamide.

⁹ Similar results were obtained using toluene or ligroin.

hydrolysis the keto ester gave only 26% of crude non-acidic decarbethoxylation product.

EXPERIMENTAL

4-Cyanoisoquinoline was obtained in a yield of 94% by the method of Tyson (46); it was found advantageous to hydrolyze this nitrile to the acid (yield 90%) by boiling it for thirty minutes with 8% aqueous sodium hydroxide. The acid (58 g.) was boiled for four hours with 300 ml. of absolute alcohol and 55 ml. of sulfuric acid, giving 64.5 g. (87%) of ethyl isoquinoline-4-carboxylate, b.p. 193-195° at 23 mm., m.p. 49°. The ester formed a *picrate*, fine yellow needles from alcohol, m.p. 154-155°.

Anal. Calc'd for $C_{12}H_{11}NO_2 + C_6H_8N_3O_7$: C, 50.2; H, 3.3.

Found: C, 50.4; H, 3.7.

Condensation with ethyl acetate. To a suspension of sodium ethoxide from 2.5 g. of powdered sodium in 25 ml. of dry ether was added 10 g. of ethyl isoquinoline-4-carboxylate and 5 g. of ethyl acetate. The mixture was boiled for thirty hours, then treated with ether and water. From the ether layer was recovered 3.9 g. of ethyl isoquinoline-4-carboxylate, and by adding 6.5 g. of acetic acid to the aqueous layer there was obtained 6.2 g. of crude ethyl isoquinoline-4, β -ketopropionate, a thick reddish oil. The keto ester was easily soluble in dil. sulfuric acid and in dil. sodium hydroxide, but not in sodium carbonate solution. It gave a deep red color with alcoholic ferric chloride, and was analyzed in the form of its picrate, fine yellow needles from alcohol, m.p. 154-155° (depression when mixed with the picrate of ethyl isoquinoline-4-carboxylate).

Anal. Cal'd for $C_{14}H_{13}NO_3 + C_6H_3N_3O_7$: C, 50.9; H, 3.4.

Found: C, 51.3; H, 3.6.

When 2.7 g. of the keto ester was boiled for thirty minutes with a mixture of 8 ml. of water and 8 ml. of conc'd hydrochloric acid, it was converted into 4-acetoisoquinoline, a colorless oil that rapidly crystallized after it has been distilled; b.p. 179° at 22 mm., m.p. 72-74°.

Anal. Calc'd for C₁₁H₉NO: C, 77.4; H, 5.3.

Found: C, 77.2; H, 5.0.

4-Acetoisoquinoline hydrochloride formed small tan prisms from alcohol-ether that sintered at 185° and melted to a red liquid at 220°.

Anal. Calc'd for $C_{11}H_9NO + HCl: C, 63.6; H, 4.8$.

Found: C, 63.3; H, 5.1.

4-Acetoisoquinoline picrate formed fine bright yellow needles from alcohol, m.p. 180–181°. Anal. Calc'd for $C_{11}H_{9}NO + C_{6}H_{3}N_{3}O_{7}$: C, 51.0; H, 3.0.

Found: C, 51.1; H, 3.3.

Condensation with ethyl 1-benzoylpiperidine-4, β -propionate. A mixture of 3 g. of sodium ethoxide, 15 ml. of dry ether, 5 g. of ethyl isoquinoline-4-carboxylate, and 6 g. of ethyl 1-benzoylpiperidine-4, β -propionate (45) was heated at 65° for twenty-four hours in a sealed tube. The part of the product that was soluble in water was acidified with acetic acid and

extracted with ethyl acetate. Removal of the solvent left 6.3 g. of a brown glassy product, that gave a yellow-brown precipitate with alcoholic ferric chloride. Carbon dioxide was evolved when the glassy product was boiled for twenty minutes with excess 1:1 hydrochloric acid. The resulting solution was basified with excess sodium hydroxide and extracted with ether, giving 2.0 g. of a yellow viscous substance, presumably 4-(1-benzoylpiperidyl-4, β -propionyl)isoquinoline. The substance formed a picrate that sintered at 138° and melted at 148°; despite repeated crystallizations, the *picrate* could not be obtained analytically pure.

Anal. Calc'd for $C_{24}H_{24}N_2O_2 + C_6H_3N_3O_7$: C, 59.9; H, 4.5.

Found: C, 54.4, 55.2; H, 4.3, 4.4.

When 1.9 g. of the viscous partial hydrolysis product was boiled for four hours with 5 ml. of water and 6 ml. of conc'd hydrochloric acid, it gave 0.5 g. of benzoic acid, and 1.05 g. of the *dihydrochloride of 4-(piperidyl-4,\beta-propionyl)isoquinoline*. Recrystallized from alcohol, this salt formed faintly tan plates that sintered at 240° and melted at 245–248° with decomposition.

Anal. Calc'd for $C_{17}H_{20}N_2O + 2HCl: C, 59.8; H, 6.5$.

Found: C, 59.7; H, 6.1.

The free base was an oil; the *picrate* formed a bright yellow crystalline powder that melted at $175-179^{\circ}$ and decomposed a few degrees higher.

Anal. Calc'd for $C_{17}H_{20}N_2O + 2C_6H_3N_3O_7$: C, 47.9; H, 3.6.

Found: C, 48.4; H, 3.9.

SUMMARY

Good yields of condensation products are obtainable from esters of N-heterocyclic acids as a result of the negativity of the nucleus. This negativity is small at the 4-position of the isoquinoline nucleus, and it is shown that ethyl isoquinoline-4-carboxylate undergoes the Claisen condensation comparatively poorly.

MINNEAPOLIS, MINN.

REFERENCES

- (1) WEIDEL, Monatsh., 17, 402 (1896).
- (2) MICKO, Monatsh., 17, 442 (1896).
- (3) FERENCZY, Monatsh., 18, 673 (1897).
- (4) PINNER, Ber., 33, 1230 (1900); 34, 4234 (1901).
- (5) TSCHERNE, Monatsh., 22, 615 (1901).
- (6) KAUFMANN, DÄNDLIKER, AND BURKHARDT, Ber., 46, 2929 (1913).
- (7) RABE AND PASTERNACK, Ber., 46, 1032 (1913).
- (8) RABE, PASTERNACK, AND KINDLER, Ber., 50, 144 (1917).
- (9) RABE AND KINDLER, Ber., 51, 1360 (1918).
- (10) RABE AND KINDLER, Ber., 52, 1842 (1919).
- (11) RUZICKA AND SEIDEL, Helv. Chim. Acta, 4, 486 (1921).
- (12) RABE AND JANTZEN, Ber., 54, 925 (1921).
- (13) RABE, KINDLER, AND WAGNER, Ber., 55, 532 (1922).
- (14) RUZICKA, SEIDEL, AND LIEBEL, Helv. Chim. Acta, 7, 995 (1924).
- (15) WIBAUT, Rec. trav. chim., 45, 657 (1926).
- (16) HURD AND WEBB, J. Am. Chem. Soc., 49, 551 (1927).
- (17) Späth and Bretschneider, Ber., 61, 327 (1928).
- (18) RABE, HUNTENBERG, SCHULTZE, AND VOLGER, Ber., 64, 2487 (1931).
- (19) WINTERFELD AND HOLZSCHNEIDER, Ann., 499, 109 (1932).
- (20) CLEMO, RAMAGE, AND RAPER, J. Chem. Soc., 2959 (1932).
- (21) STRONG AND MCELVAIN, J. Am. Chem. Soc., 55, 818 (1933).
- (22) GOUGH AND KING, J. Chem. Soc., 350 (1933).

- (23) RABE AND SCHULTZE, Ber., 66, 120 (1933).
- (24) CLEMO AND HOLMES, J. Chem. Soc., 1739 (1934).
- (25) WINTERFELD AND HOLZSCHNEIDER, Arch. Pharm., 273, 305 (1935).
- (26) WINTERFELD AND HOLZSCHNEIDER, Arch. Pharm., 273, 315 (1935).
- (27) KUICK AND ADKINS, J. Am. Chem. Soc., 57, 143 (1935).
- (28) Späth and Mamoli, Ber., 69, 757 (1936).
- (29) Späth and Mamoli, Ber., 69, 1082 (1936).
- (30) CLEMO, MORGAN, AND RAPER, J. Chem. Soc., 965 (1937).
- (31) SPÄTH AND GALINOVSKY, Ber., 71, 721 (1938).
- (32) AINLEY AND KING, Proc. Roy. Soc. (London), B125, 60 (1938).
- (33) CLEMO, HOLMES, AND LEITCH, J. Chem. Soc., 753 (1938).
- (34) PRELOG, SEIWERTH, HAHN, AND CERKOVNIKOV, Ber., 72, 1325 (1939).
- (35) WINTERFELD AND HOLZSCHNEIDER, Arch. Pharm., 277, 221 (1939).
- (36) FERBER AND BENDIX, Ber., 72, 839 (1939).
- (37) RUBTSOV, J. Gen. Chem. (U.S.S.R.), 9, 1493 (1939).
- (38) NANDI, J. Indian Chem. Soc., 17, 285 (1940).
- (39) DORNOW AND MACHENS, Ber., 73, 355 (1940).
- (40) NANDI, Proc. Indian Acad. Aci., 12A, 1 (1940); Chem. Abstr., 34, 7918 (1940).
- (41) KOLLOFF AND HUNTER, J. Am. Chem. Soc., 63, 490 (1941).
- (42) RABE AND HAGEN, Ber., 74, 636 (1941).
- (43) PRELOG, SEIWERTH, HEIMBACH-JUHASZ, AND STERN, Ber., 74, 647 (1941).
- (44) PROSTENIK AND PRELOG, Helv. Chim. Acta, 26, 1970 (1943).
- (45) KOELSCH, J. Am. Chem. Soc., 65, 2460 (1943).
- (46) TYSON, J. Am. Chem. Soc., 61, 184 (1939).
- (47) LINNELL AND RIGBY, Quart. J. Pharmacol., 11, 722 (1938).