A SIMPLE SYNTHESIS OF 1-TRIMETHYLSILYL-2,3-DIENES

Cristina Nativi, Alfredo Ricci and Maurizio Taddei*
Centro CNR Composti Eterociclici, c/o Dipartimento di Chimica Organica
" U.Schiff " dell' Universita', Via G.Capponi 9 1-50121 Firenze Italy.

Summary. 1-Trimethylsilyl-2,3-dienes have been prepared through a conjugative acidic elimination of a tributylstannyl and a hydroxy group from β -hydroxy-vinylstannanes.

Allenes have always played an important role in the synthesis of terpenoids and differently substituted dienic and polyenic systems 1.

Although 1-trimethylsilyl-1,2-dienes (trimethylsilyl allenes) have been widely synthesised using different methods 2 , 1-trimethylsilyl-2,3-dienes (α -allenylsilanes) have not attracted much attention as revealed by the few reports dealing with their chemistry 3 .

Nevertheless 1-trimethylsilyl-2,3-dienes have a peculiar structure with the possibility of a double functionalisation. They can be regarded as dienes in which the normal functionalisation can be achieved on the allenic part without affecting the C-Si bond, or as allylsilane analogues particularly useful for the synthesis of 1,3 dienes.

Here we report a new high yield synthesis of 1-trimethylsilyl-2,3-dienes, based on a conjugative α , β elimination of a -SnBu $_3$ and a -OH in acidic media from vinylstannanes 1.

In fact, on treating a solution of 1d (2.2 g, 4.3 mmol) in dry THF (7 mL) at 0°C with CF₃SO₃H (0.6 g, 4.3 mmol), after 1 min. tlc analysis showed the disappearence of the starting material. After hydrolysis with a saturated ammonium chloride solution followed by extraction in diethyl ether, compound (2d) was isolated by column chromatography on silica gel (eluant hexane), 600 mg, (68% yield)⁵. Stannyl derivatives 1 can be easily prepared by hydrostannylation of the corresponding propergylalcohols⁶.

When the reaction was performed on 1a, there was also about 40 % formation of the diene 3 was observed.

Allenes 2b-f easily undergo protodesilylation to give the corresponding dienes as shown in the following example:

$$(CH_3)_3Si$$
 $2e$
 H^+

Further applications of this procedure are currently underway in our laboratory.

References and notes.

- 1) H.F.Schuster, G.M.Coppola, Allenes in Organic Synthesis, Wiley-Interscience, New York, (1984); D.J. Pasto, <u>Tetrahedron</u>, **39**, 2805 (1983); W.Smadja, <u>Chem.Rev.</u>, **83**, 263 (1983); J.D.Buynak, J.Mathew, M.N. Rao, <u>J.Chem.Soc.Chem.Commun.</u> **1986** 941.
- 2) R.L.Danheiser, D.J.Carini, A.Basak, <u>J.Am.Chem.Soc.</u>, 103, 1604 (1981); R.L.Danheiser, D.J.Carini, D.M.Fink, A.Basak, <u>Tetrahedron</u> 39, 935 (1983) and references therein; T.Tabuchi, J,Inanaga, M.Yamaguchi, <u>Tetrahedron</u> <u>Lett</u>, 27, 5237 (1986).
- 3) To our knowledge the only report dealing with the preparation of 1-trimethylsilyl, 2, 3-dienes is: M.Montury, B.Psaume, J.Gore', <u>Tetrahedron</u>. <u>Lett.</u>, **21**, 163 (1980).
- 4) I.Fleming, F.J.Pulido, J.Chem.Soc.Chem.Commun., 1986, 1010.
- 5) 2a NMR (CCl₄) δ : 0.19 (s, 9H, Me₃Si), 1.06 (m, 2H, CH₂), 5.3-5.5 (m, 3H, alleny part), Mass spectrum m/e: 126 (M⁺). 2b NMR (CCl₄) δ : 0.00 (9H, s, Me₃Si), 0.7-1.1 (5H, m, CH₃,CH₂), 1.2-1.6 (2H, m, CH₂), 1.9-2.0 (2H, m, CH₂) 4.6-4.9 (1H, m, CH=), 5.3-5.5 (1H, m, CH=). Mass spectrum m/e: 153 (M⁺-15).2c NMR (CCl₄) δ : 0.51 (9H, s, Me₃Si), 0.8-1.1 (8H, m, 2CH₃, CH₂), 2.2(1H, m, CH), 4.9-5.1 (1H, m, CH=), 5.5-5.8 (1H, m, CH=).Mass spectrum: m/e 168 (M⁺).2d NMR (CCL₄) δ : 0.22 (9H, s, Me₃Si), 0.9-1.2 (5H, m, CH₃, CH₂), 1.3-1.5 (10H, m, 5CH₂), 2.0-2.4 (1H, m, CH), 5.0-5.3 (2H, m, 2CH=).Mass spectrum m/e: 167 (M⁺-C₃H₇). 2e NMR (CCl₄) δ : 0.00 (9H, s, Me₃Si), 1.2-1.5 (2H, m, CH₂), 5.3-5.5 (1H, m, CH=), 5.9-6.1 (1H, m, CH=), 6.9-7.2 (5H, m, Arom.).Mass spectrum m/e: 190 (M⁺).
- 6) C.Nativi, M.Taddei, A.Mann, Tetrahedron Lett. 28, 347 (1987).

(Received in UK 30 March 1987)