Preparation of New Heterocycles from *N*-(1,3-Benzothiazol-2-yl)-2-chloropyridine-3-carboxamides and *N*-(1,3-Thiazol-2-yl)-2-chloropyridine-3-carboxamides

F. L. MERCHÁN*, J. GARIN, E. MELENDEZ, T. TEJERO

Departamento de Química Orgánica, Universidad de Zaragoza, Zaragoza, Spain

Only a few reports on the angular [1,3]benzothiazolo[3,2-a]quinazoline ring systems are found in the literature^{1,2,3}. Analogous systems having the pyrido[2,3-d]pyrimidine moiety in place of the quinazoline moiety have hitherto not been described. 5-Oxo-5H-[1,3]benzothiazolo[3,2-a]quinazolines have recently been prepared from N-(1,3-benzothiazol-2-yl)-2-fluorobenzamides⁴. Because of the considerable pharmaceutical interest of compounds containing a combination of the benzothiazole or thiazole and the pyridine ring system, we investigated the synthesis of the title compounds and their cyclization products.

We describe here the synthesis of N-(1,3-benzothiazol-2-yl)-(5) and N-(1,3-thiazol-2-yl)-2-chloropyridine-3-carboxamides (6) from 2-chloropyridine-3-carbonyl chloride (2) and 2-amino-1,3-benzothiazoles (3) or 2-amino-1,3-thiazoles (4) respectively, and the cyclization of compounds 5 and 6 to 5-oxo-5H-pyrido[3',2':5,6]pyrimido[2,1-b][1,3]benzothiazoles (7) or 5-

0039-7881/83/0232-0154-03 \$ 03.00

© 1983 Georg Thieme Verlag · Stuttgart · New York

oxo-5H-[1,3]thiazolo[3,2-a]pyrido[3,2-e]pyrimidines (8). The cyclization reactions $5 \rightarrow 7$ and $6 \rightarrow 8$ are effected by refluxing compounds 5 or 6, respectively, in dimethylformamide for 50 h. In the case of compounds 5c ($R^3 = NO_2$) and 5d ($R^1 = CI$), the intramolecular cyclocondensation does not take place even when prolonged reaction times are used, the starting materials being recovered unchanged.

Melting points were determined using a Mettler FP-61 automatic apparatus. Mass spectra were recorded with a Hewlett-Packard 5930-A spectrometer. I.R. spectra were recorded with a Perkin-Elmer 283 instrument. ¹H-N.M.R. spectra were obtained with a Perkin-Elmer R-12 spectrometer.

N-(1,3-Benzothiazol-2-yl)-2-chloropyridine-3-carboxamides (5) and N-(1,3-Thiazol-2-yl)-2-chloropyridine-3-carboxamides (6); General Procedure:

A mixture of 2-chloropyridine-3-carboxylic acid (1; 6.3 g, 0.04 mol) and thionyl chloride (24 ml, 0.33 mol) is heated at reflux temperature with vigorous stirring. After 3 h, the acid 1 has completely dissolved. Excess thionyl chloride is distilled off, benzene (20 ml) is added, and the last traces of thionyl chloride are distilled off with the added benzene. The 2-chloropyridine-3-carbonyl chloride (2) thus obtained is dissolved in benzene (100 ml) and this solution added dropwise, with stirring, to a mixture of the 2-amino-1,3-benzothiazole (3; 0.04 mol) or 2-

Table 1. N-(1,3-Benzothiazol-2-yl)-2-chloropyridine-3-carboxamides (5) and N-(1,3-Thiazol-2-yl)-2-chloropyridine-3-carboxamides (6)

Prod- uct	R¹	R ²	R ³	R	Yield [%]	m.p. [°C] (solvent)	Molecular formula ^a	M.S. (70 eV) m/e M+ (%)	I.R. (Nujol)		1 H-N.M.R. (DMSO- d_{6} /TMS $_{int}$)
									$v_{ m NH}$	ν _C ο [cm ⁻¹]	δ [ppm]
5a	Н	Н	Н		73	259-261° (ethanol)	C ₁₃ H ₈ CIN ₃ OS (289.7)	289 (68)	3190	1675	13.1 (s, 1H, NH); 8.7-7 (m, 7H)
5b	Н	Н	OCH ₃		60	251-252° (ethanol)	C ₁₄ H ₁₀ ClN ₃ O ₂ S (319.7)	319 (10)	3190	1675	8.7-7 (m, 6H); 3.8 (s, 3H, OCH ₃)
5c	Н	Н	NO_2		48	249-250.5° (butanol)	C ₁₃ H ₇ ClN ₄ O ₃ S (334.7)	334 (30)	3190	1675	9-7.4 (m, 6H)
5d	Cl	Н	Н	***	53	197-199° (ethanol)	C ₁₃ H ₂ Cl ₂ N ₃ OS (324.2)	324 (12)	3200	1690	8.7-7.1 (m, 6 H)
5e	Н	CH ₃	CH ₃	and the same of th	76	> 300° (butanol)	C ₁₅ H ₁₂ ClN ₃ OS (317.8)	317 (19)	3180	1670	8.7-7.4 (m, 5H); 2.3 (s, 6H, 2CH ₃)
6a				Н	84	180° (ethanol)	C ₉ H ₆ ClN ₃ OS (239.7)	239 (39)	3190	1670	8.7 (m, 1H, 6-H); 8.25 (m, 1H, 4-H); 7.65 (d, 1H, 4'-H); 7.6 (m, 1H, 5-H'); 7.4 (d, 1H, 5'-H)
6b				CH ₃	75	165° (ethanol)	C ₁₀ H ₈ CIN ₃ OS (253.7)	253 (100)	3180	1670	8.5 (m, 1 H, 6-H); 8.05 (m, 1 H, 4-H); 7.5 (m, 1 H, 5-H); 6.8 (d, 1 H, 5'-H); 2.25 (s, 3 H, CH ₃)

⁴ The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.30 ; H, ± 0.25 ; N, ± 0.32 .

Table 2. 5-Oxo-5*H*-pyrido[3',2':5,6]pyrimido[2,1-*b*][1,3]benzothiazoles (7) and 5-Oxo-5*H*-[1,3]thiazolo[3,2-*a*]pyrido[3,2-*e*]pyrimidines (8)

Prod- uct	Yield [%]	m.p. [°C]	Molecular formula ^a	M.S. (70 eV) m/e M ⁺ (%)	I.R. (Nujol) v_{CentO} [cm ⁻¹]	1 H-N.M.R. (TFA- d /TMS $_{\mathrm{int}}$) δ [ppm]
7a	60	244-245°	C ₁₃ H ₇ N ₃ OS (253.3)	253 (100)	1650	9.9 (m, 1 H, 11-H); 9.3 (m, 1 H, 2-H); 9.0 (m, 1 H, 4-H); 8.3-7.8 (m, 4 H)
7b	62	249-250°	$C_{14}H_9N_3O_2S$ (283.3)	283 (100)	1640	9.8 (m, 1H, 11-H); 9.3 (m, 1H, 2-H); 9.0 (m, 1H, 4-H); 8.2-7.5 (m, 3H); 4.1 (s, 3H, OCH ₃)
7e	79	293-295°	$C_{15}H_{11}N_3OS$ (281.3)	281 (100)	1650	9.8 (s, 1H, 11-H); 9.4 (m, 1H, 2-H); 9.1 (m, 1H, 4-H); 8.3~7.7 (m, 2H); 2.7 (s, 3 H, CH ₃); 2.6 (s, 3 H, CH ₃)
8a	71	283-285°	$C_9H_5N_3OS$ (203.2)	203 (100)	1640	9.25 (m, 1H, 2-H); 9.1 (d, 1H, 9-H); 9.05 (m, 1H, 4-H); 8.1 (m, 1H, 3-H); 7.9 (d, 1H, 8-H)
8b	60	296-297°	C ₁₀ H ₇ N ₃ OS (217.2)	217 (100)	1635	9.2 (m, 1 H, 2-H); 9.05 (m, 1 H, 4-H); 8.05 (m, 1 H, 3-H); 7.45 (s, 1 H, 8-H); 3.3 (s, 3 H, CH ₃)

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.23 ; H, ± 0.22 ; N, ± 0.27 .

156 Communications SYNTHESIS

amino-1,3-thiazole (4; 0.04 mol) and triethylamine (4.04 g, 0.04 mol) in benzene (100 ml). After the addition is complete the mixture is heated at reflux temperature for 3 h, and then cooled. The solid product 5 or 6 is isolated by suction, dried, and purified by recrystallization.

5-Oxo-5*H*-pyrido[3',2':5,6]pyrimido[2,1-*b*][1,3]benzothiazoles (7) and 5-Oxo-5*H*-[1,3]thiazolo[3,2-*a*]pyrido[3,2-*e*]pyrimidines (8); General Procedure:

The N-substituted 2-chloropyridine-3-carboxamide 5 or 6 (2 mmol) is dissolved in dimethylformamide (10 ml) and this solution heated at reflux temperature for 50 h. On cooling of the mixture, products 7 or 8 precipitate as fine needles. The precipitate is isolated by suction and washed with ethanol.

Received: July 27, 1982

0039-7881/83/0232-0156-02 \$ 03.00

© 1983 Georg Thieme Verlag · Stuttgart · New York

^{*} Address for correspondence.

S. K. Modi, S. Singh, K. S. Narang, *Indian J. Chem.* 10, 605 (1972).

S. I. Shulga, V. A. Chuiguk, Ukr. Khim. Zh. 37, 350 (1971); C. A. 75, 76720 (1971).

S. I. Shulga, V. A. Chuiguk, *Ukr. Khim. Zh.* **39**, 66 (1973); *C. A.* **78**, 111 247 (1973).

⁴ D. H. Kim, J. Heterocyclic Chem. 18, 801 (1981).