ISSN 1070-3632, Russian Journal of General Chemistry, 2011, Vol. 81, No. 9, pp. 1915–1917. © Pleiades Publishing, Ltd., 2011. Original Russian Text © R.N. Shakhmaev, A.U. Ishbaeva, A.Sh. Sunagatullina, V.V. Zorin, 2011, published in Zhurnal Obshchei Khimii, 2011, Vol. 81, No. 9, pp. 1578–1580.

LETTERS TO THE EDITOR

Stereoselective Synthesis of Sarmentine

R. N. Shakhmaev, A. U. Ishbaeva, A. Sh. Sunagatullina, and V. V. Zorin

Ufa State Petroleum Technical University, ul. Kosmonavtov 1, Ufa, 450062 Russia e-mail: biochem@rusoil.net

Received February 21, 2011

DOI: 10.1134/S1070363211090337

Natural (2E,4E)-dienamides of *Piperaceae* and *Echinacea* species have a broad spectrum of therapeutic action, and in the past decade they attracted a wide attention [1–7]. Sarmentine, the 1-[(2E,4E)-deca-2,4-dienoyl]pyrrolidine, was first isolated from the *Piper sarmentosum* fruits [8]. It possesses sedative, analgesic, and antibacterial activities [9]. Recently it was found to manifest antitubercular and antiplazmo-dial activities [10].

The main task in a sarmentine synthesis is the stereoselective construction of conjugated (2E,4E)-diene system bonded with the amide function. Previously for this purpose were used the elimination [11] and homologenization of (2E,4E)-pentadienyl-1-carbonyl precursors [12, 13], isomerization of alkynyl-amides [14] and stereoselective iodosulfonylation of (2E,4E)-pentadienamide followed by the cross-coupling with *n*-pentylmagnesium bromide [15]. These methods are characterized by the low overall yield of the target product and the low stereoselectivity.

We investigated the possibility of stereoselective synthesis of 1-[(2E,4E)-deca-2,4-dienoyl]pyrrolidine I on the basis of direct cross-coupling of (1E)-1-iodohept-1-ene II with 1-acryloylpyrrolidine III (the Mizoroki–Heck reaction) [16–19]. The initial (1E)-1-iodohept-1-ene II was obtained via the hydroalumination-iodination of 1-heptyne IV in an yield of 88% by the optimized procedure [20]. The other building-block in the cross-coupling reaction, 1-acryloylpyrrolidine III, was synthesized through the acrylic acid chlorodehydroxylation followed by the amidation of acryloyl chloride V with pyrrolidine.

The reaction of (1E)-1-iodohept-1-ene with 1acrciloylpyrrolidine in the presence of Pd(OAc)₂, a base, and tetrabutylammonium chloride in DMF yields quantitatively 1-[(2E,4E)-deca-2,4-dienoyl]pyrrolidine with an insignificant content of isomeric products (1%). The total yield of the desired product is 83% relative to the starting 1-heptyne.

The structure and stereochemical purity of sarmentine I was confirmed by the ¹H and ¹³C NMR spectrometry, GLC analysis, and gas chromatography– mass spectrometry. In the ¹H NMR spectrum of the product I the coupling constants of vinyl hydrogen atom at C^2 atom is 7.14 Hz, which indicates clearly the double bond of transoid configuration.

The IR spectra were recorded from a thin layer on a Prestige-21 Shimadzu IR-Fourier spectrometer. The ¹H and ¹³C NMR spectra were recorded on a Bruker AM-300 instrument operating at 300 and 75.47 MHz, respectively) from solutions in CDCl₃. The chromatographic and mass spectral analysis was performed on a Chromatec-Crystal 5000 complex equipped with a Finnigan DSQ mass-selective detector (electron impact at 70 eV). A Restek Rtx-5ms capillary column (5% diphenylpolysiloxane, 95% dimethylpolysiloxane, length 30 m) was used, the evaporator temperature 250°C, the ionization cell temperature 250°C. The analysis was carried out with programming temperature from 50 to 250°C at a heating rate 10 deg min⁻¹, carrier gas helium (1.1 ml min⁻¹).

(1E)-1-Iodohept-1-ene (II) was obtained by the modified procedure [20]. To a solution of 0.96 g of 1heptyne IV in 10 ml of anhydrous hexane 15 ml of 1 M diisobutyl aluminum hydride solution in hexane was added. The mixture was stirred for 6 h at 55°C in an argon atmosphere and cooled to -50° C. Then to this mixture a solution of 2.79 g of iodine in 10 ml of anhydrous THF was added over 30 minutes. The reaction mixture was warmed within 1 h to room temperature and stirred at this temperature for another 12 h. To the mixture 25 ml of 10% sulfuric acid solution was added under ice-cooling. The organic layer was separated, and the aqueous layer was extracted with hexane (3×15 ml). The combined organic solutions were washed with brine, dried over Na₂SO₄, and concentrated. The product was isolated by the column chromatography (SiO₂, hexane-chloroform, 6:1). Yield 1.98 g (88%). IR spectrum, v, cm^{-1} : 2955, 2924, 2855, 1605, 1458, 1209, 1173, 939. ¹H NMR spectrum, δ, ppm: 0.87 t (3H, CH₃), 1.21–1.43 m (6H, 3CH₂), 2.03 q (2H, CH₂CH=, J 6.9 Hz), 5.96 d $(1H, C^{1}H=, J 14.4 Hz), 6.45-6.54 m (1H, C^{2}H=).$ ¹³C NMR spectrum, δ_{C} , ppm: 13.91 (C⁷), 22.33 (C⁶), 27.96 (C^4) , 31.02 (C^5) , 35.93 (C^3) , 74.24 (C^1) , 146.65 (C^2) . Mass spectrum, m/z (I_{rel} , %): 224 (34) $[M]^+$, 167 (24), 154 (55), 97 (22), 69 (13), 55 (100), 41 (23), 39 (13).

1-Acryloylpyrrolidine (III). To a solution of 1.81 g of acryloyl chloride V in 20 ml of anhydrous dichloroethane was slowly added 2.84 g of pyrrolidine in 15 ml of anhydrous dichloroethane at 0–5°C. The reaction mixture was stirred for 3 h at room temperature. The precipitate was filtered off and washed with dichloromethane $(2 \times 10 \text{ ml})$. The organic layer was successively washed with 10 ml of water, 2 ml of 5% HCl solution, 2 ml of NaHCO₃ saturated solution, and dried over Na₂SO₄. The solvent was removed, and the crude product was purified by the column chromatography (SiO₂, hexane–ethyl acetate, $5:1\rightarrow 1:1$). Yield 1.38 g (55%). IR spectrum, v, cm⁻¹: 2972, 2872, 1647, 1609, 1436, 1375, 982, 797. ¹H NMR spectrum, δ, ppm: 1.65-1.85 m (4H, 2CH₂), 3.31-3.40 m (4H, 2 CH₂N), 5.48 d (1H, CH₂=, J 10.1 Hz), 6.12–6.35 m (2H, CH₂=, CH=). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 23.67 (CH₂), 25.53 (CH₂), 45.24 (CH₂N), 45.96 (CH₂N), 126.46 (CH₂=), 128.38 (CH=), 163.76 (C=O). Mass spectrum, m/z (I_{rel} , %): 125 (75) $[M]^+$, 124 (36), 97 (14), 96 (24), 70 (39), 69 (32), 68 (18), 56 (13), 55 (100), 43 (12), 42 (19), 41 (22), 39 (14).

1-[(2E,4E)-Deca-2,4-dienoyl]pyrrolidine (I). To a mixture of 0.46 g of K₂CO₃, 0.37 g of Bu₄NCl, 0.3 g of (1E)-1-iodohept-1-ene II, and 0.25 g of 1-acryloylpyrrolidine III in 0.9 ml of DMF was added a solution of 0.006 g of Pd(OAc)₂ in 0.1 ml of DMF. The reaction mixture was purged with argon and heated for 5 h at 70°C under stirring. After consumption of (1E)-1iodohept-1-ene II (TLC control), 3 ml of water and 3 ml of hexane was added to the mixture. The organic layer was separated, and the aqueous layer was extracted with hexane (2×3 ml). The combined organic solutions were washed with water (5 ml), dried over Na₂SO₄, and concentrated. The crude product was purified by the column chromatography $(SiO_2,$ hexane-ethyl acetate, $9:1\rightarrow 4:6$). Yield 0.28 g (94%). IR spectrum, v, cm⁻¹: 2955, 2926, 2870, 1653, 1624, 1600, 1425, 999. ¹H NMR spectrum, δ, ppm: 0.89 t (3H, CH₃), 1.26–1.47 m (6H, 3 CH₂), 1.81–2.03 m (4H, 2 CH₂CH₂N), 2.15 q (2H, CH₂CH=, J 7.0 Hz), 3.46–3.58 m (4H, 2 CH₂N), 6.02–6.23 m (2H, 2 CH=), 6.10 d (1H, C²H=, J 14.7 Hz), 7.22–7.35 m (1H, CH=). ¹³C NMR spectrum, δ_{C} , ppm: 13.76 (C¹⁰), 22.24 (C⁹), 24.10 (CH₂CH₂N), 25.86 (CH₂CH₂N), 28.23 (C^7), 31.11 (C⁸), 32.69 (C⁶), 45.57 (CH₂N), 46.17 (CH₂N), 119.66 (C²), 128.50 (C⁴), 141.86 (C⁵ or C³), 142.79 (C³ or C⁵), 164.89 (C¹). Mass spectrum, m/z (I_{rel} , %): 221 $(22) [M]^+$, 151 (29), 150 (100), 98 (27), 95 (26), 81 (76), 70 (46), 69 (30), 67 (27), 55 (36), 53 (23), 41 (28).

REFERENCES

- Silva, R.V., Navickiene, H.M.D., Kato, M.J., Bolzani, V.S., Meda, C.I., Young, M.C.M., and Furlan, M., *Phytochemistry*, 2002, vol. 59, p. 521.
- Tsukamoto, S., Tomise, K., Miyakawa, K., Cha, B.C., Abe, T., Hamada, T., Hirota, H., and Ohta, T., *Bioorg. Med. Chem.*, 2002, vol. 10, p. 2981.
- Stohr, J.R., Xiao, P.G., and Bauer, R., J. Ethnopharmacol., 2001, vol. 75, p. 133.
- Venkatasamy, R., Faas, L., Young, A.R., Raman, A., and Hider, R.C., *Bioorg. Med. Chem.*, 2004, vol. 12, p. 1905.
- Reddy, S.V., Srinivas, P.V., Praveen, B., Kishore, K.H., Raju, B.C., Murthy, U.S., and Rao, J.M., *Phytomedicine*, 2004, vol. 11, p. 697.
- 6. Hinz, B., Woelkart, K., and Bauer, R., Biochem. Biophys. Res. Commun., 2007, vol. 360, p. 441.
- Lee, S.W., Kim, Y.K., Kim, K., Lee, H.S., Choi, J.H., Lee, W.S., Jun, C.D., Park, J.H., Lee, J.M., and Rho, M.C., *Bioorg. Med. Chem. Lett.*, 2008, vol. 18, p. 4544.

- 8. Likhitwitayawuid, K., Ruangrungsi, N., Lange, G.L., and Decicco, C.P., *Tetrahedron*, 1987, vol. 43, p. 3689.
- Strunz, G.M., Stud. Nat. Prod. Chem., 2000, vol. 24, p. 683.
- Rukachaisirikul, T., Siriwattanakit, P., Sukcharoenphol, K., Wongvein, C., Ruttanaweang, P., Wongwattanavuch, P., and Suksamrarn, A., *J. Ethnopharmacol.*, 2004, vol. 93, p. 173.
- 11. Mandai, T., Moriyama, T., Tsujimoto, K., Kawada, M., and Otera, J., *Tetrahedron Lett.*, 1986, vol. 27, p. 603.
- 12. Lewis, N., McKen, P.W., and Taylor, R.J.K., *Synlett*, 1991, p. 898.
- 13. Babudri, F., Fiandanese, V., Naso, F., and Punzi, A., *Tetrahedron Lett.*, 1994, vol. 35, p. 2067.

- 14. Trost, B.M. and Kazmaier, U., J. Am. Chem. Soc., 1992, vol. 114, p. 7933.
- 15. Bernabeu, M.C., Chinchilla, R., and Najera, C., *Tetrahedron Lett.*, 1995, vol. 36, p. 3901.
- Handbook of Organopalladium Chemistry for Organic Synthesis, Negishi, E., Ed., New York: Wiley Interscience, 2002.
- 17. Heck, R.F., Org. React., 1982, vol. 27, p. 345.
- Metal-Catalyzed Cross-Coupling Reactions, de Meijere, A. and Diederich, F., Eds., New York: Wiley-VCH, 2004.
- 19. Ishbaeva, A.U., Shakhmaev, R.N., and Zorin, V.V., *Zh. Org. Khim.*, 2010, vol. 46, no. 2, p. 183.
- 20. Zweifel, G. and Whitney, C.C., J. Am. Chem. Soc., 1967, vol. 89, p. 2753.