Synthesis of Two Precursors of Heterocarbocyclic Nucleoside Analogues

Paula Abeijón,^[a] José M. Blanco,^{*[a]} Franco Fernández,^[a] Marcos D. García,^[a] and Carmen López^[a]

Keywords: Heterocarbocyclic nucleoside / Heterobicyclic amino alcohol / AlH₃ reduction

The racemic heterobicyclic amino alcohols **6** and **7**, which are of interest as intermediates in the synthesis of nucleoside analogues with heterobicyclic pseudosugars, were efficiently prepared from 2-thienylsuccinic acid via methyl 4-hy-droxyimino-5,6-dihydro-4*H*-cyclopenta[*b*]thiophene-6-carboxylate [(\pm) -**14**]. The target compounds were obtained

1. Introduction

Over the past two decades, several types of nucleoside and nucleoside analogues have been identified as potent, selective inhibitors of the replication of HIV-1, HSV-2, HBV and/or HCMV in vitro and in vivo, and some of these substances now constitute the basis of clinically important therapies.^[1] One major class of modified nucleosides comprises the carbocyclic nucleosides, or carbanucleosides, in which the sugar ring oxygen has been replaced by a methylene group.^[2]

The first member of this class was the carbocyclic analogue of adenosine described by Shealy in 1966,^[3] and interest was spurred by the discovery of the antibiotic and antitumoural activities of the natural carbocyclic nucleosides aristeromycin (1)^[4] and neplanocin A (2).^[5] Since then, many synthetic carbanucleosides have been prepared, including the HIV-inhibitors carbovir (3)^[6] and abacavir (4),^[7] the latter of which is used therapeutically.

More recently, Mackenzie and co-workers^[8] have modified the nucleoside analogue stavudine (5) by fusing a benzene ring to the carbasugar, which increases lipophilicity (and hence access to the central nervous system, a major reservoir of $HIV^{[9]}$) while maintaining the rigidity imposed by the C2'-C3' double bond, and analogous carbanucleosides have been prepared in which an aromatic heterocycle is fused to the carbasugar of carbovir or abacavir.^[10] Here we describe the efficient preparation of the heterobicyclic amino alcohols **6** and **7**, from which the corresponding het-

Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

together by direct reduction of (\pm) -14 with AlH₃ in refluxing THF, and were separated by flash chromatography of their *N*-acetylated derivatives.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

eroaromatic nucleosides can be obtained by constructing a purine or pyrimidine base on the amino group, following conventional methods.^[11]

2. Results and Discussion

Amino alcohols 6 and 7 were prepared as racemic mixtures awaiting determination of the biological activity of the corresponding nucleoside analogues prior to pursueing enantiomeric separation. As a common intermediate for the two, we first prepared hydroxyimino ester 14, starting from commercial thiophene-2-carbaldehyde. Knoevenagel condensation of the latter with ethyl malonate afforded the un-

 [[]a] Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Fax: +34-981-594-912

E-mail: gojb@usc.es

Scheme 1. (a) Diethyl malonate, piperidine, toluene, reflux; (b) KCN/H₂O, EtOH, reflux (c) (1) 1.5 N NaOH, reflux; (2) 6 M HCl, reflux; (d) AcCl, reflux; (e) AlCl₃, 1,2-dichloroethane, room temp.; (f) MeOH, TsOH, reflux; (g) NH₂OH·HCl, NaAc/H₂O, EtOH, reflux.

saturated diester 8, which was converted into thien-2-ylsuccinic acid (10) by addition of KCN and hydrolysis/decarboxylation of the intermediate 9 (Scheme 1). Attempted direct synthesis of 4-oxo-5,6-dihydro-4H-cyclopenta[b]thiophene-6-carboxylic acid (12) by heating of 10 with polyphosphoric acid (PPA) at 70 °C achieved a yield of only 4%, and heating with PPA in xylene at 100 °C^[12] only increased this value to 12%; in both cases, most of the starting diacid failed to react, and nor was there any reaction when 10 was treated with trimethylsilyl polyphosphate (PPSE, easily prepared from P₂O₅ and hexamethyldisiloxane)^[13] in a refluxing mixture of dichloromethane and P₂O₅ (although PPSE has successfully been used for other intramolecular Friedel-Crafts cyclizations in aprotic media for example, to obtain substituted 9H-selenoxanthen-9-ones.)^[14] Finally, acid 12 was obtained in 57% yield by heating 10 in refluxing acetyl chloride and treating the resulting anhydride 11 with AlCl₃ in 1,2-dichloroethane. Esterification of 12 and reaction of the ester 13 with hydroxylamine-hydrochloride then afforded 14 as a mixture of the (E)- and (Z)-hydroxyimino esters in 46% yield from 12.

Expecting a simultaneous reduction of the oxime and ester groups,^[15] **14** was treated with LiAlH₄ for 6 h in refluxing THF, but the product (**19**;^[16] yield 23%) was the result of a selective ester reduction (see Supporting Information, Table S1, Entry 1). Increasing the reaction time to 33 h afforded a lower yield of **19** (11%) together with an 11% yield of amino alcohol **20**,^[17] presumably the result of Beckmann rearrangement of **19** and subsequent reduction (Entry 2).^[18]

Compound **19** was also the only product when L-selectride was used to investigate the stereoselectivity of the reduction reaction (Entry 3).^[19] However, heating **14** for 5 h with AlH₃ in refluxing THF^[20] (Entry 4) gave the desired

Scheme 2. (a) AlH₃, THF, reflux; (b) Ac_2O , Et_3N , room temp.; (c) (1) K_2CO_3 , MeOH, room temp.; (2) flash chromatography; (d) (1) 2 M HCl, MeOH, reflux; (2) Amberlite IRA-400 (OH).

cis and *trans* amino alcohols **6** and **7** in 55% combined yield and 1:1 ratio as deduced from the ¹H NMR spectrum.

After the failure of attempts to separate **6** and **7** chromatographically, they were diacetylated by treatment with Ac_2O in Et₃N at room temperature (Scheme 2). However, the diacetylated derivatives **15** and **16** were also inseparable, except for analytical samples that were obtained by fractional crystallization from 1:1 hexane/EtOAc and were identified by X ray crystallography of a crystal of **16** (Figure S1; see Supporting Information).^[21]

Partial saponification of the mixture of **15** and **16** with K_2CO_3 in MeOH at room temperature then afforded the acetamides **17** and **18** in 20% and 17% yield (from **14**) after efficient separation by flash chromatography. Finally, acid hydrolysis of these acetamides with 2 M HCl in MeOH gave the corresponding hydrochlorides, which were converted into the racemic amino alcohols **6** and **7** by ion exchange chromatography on a basic resin. Configurational assignment of **7** as the *trans* isomer (and hence that of **6** as the *cis* isomer) was confirmed by converting **7** into its diacetyl derivative, **16**.

3. Experimental Section

3.1 General: Melting points are uncorrected and were determined with a Reichert Kofler Thermopan or in capillary tubes in a Büchi 510 apparatus. Infrared spectra were recorded with a Perkin-Elmer 1640 FTIR spectrophotometer. ¹H NMR spectra (300 MHz) and ¹³C NMR spectra (75 MHz) were recorded with a Bruker AMX 300 spectrometer using TMS as internal reference (chemical shifts in δ values, J in Hz). Mass spectra were recorded with a Kratos MS-59 spectrometer. HRMS were obtained using MICROMASS AUTOSPEC mass spectrometer. Microanalyses were performed with a Perkin-Elmer 240B elemental analyser by the Microanalysis Service of the University of Santiago. X-ray diffraction data were collected with an Enraf-Nonius CAD4 automatic diffractometer using the program CAD4-EXPRESS. Most of reactions were monitored by TLC on pre-coated silica gel plates (Merck 60 F254, 0.25 mm). Synthesized products were purified by flash column chromatography on silica gel (Merck 60, 230-240 mesh) and crystallized if necessary. Solvents were dried by distillation prior use.

3.1.1 Diethyl (Thien-2-ylmethylene)malonate (8): Diethyl malonate (36.7 g, 0.23 mol) was added dropwise to a mixture of thiophene-2carbaldehyde (20 g, 0.18 mol), AcOH (5.5 mL), piperidine (5.5 mL) and toluene (150 mL). The mixture was refluxed for 6.5 h in an apparatus with a Dean-Stark trap for removal of water, and was then concentrated under reduced pressure. The residue was taken into dichloromethane (170 mL), and this solution was washed successively with satd. NaHCO₃ (3×150 mL), 3 N HCl (3×150 mL) and water $(3 \times 150 \text{ mL})$, and then dried with anhydrous Na₂SO₄. Removal of the solvent under reduced pressure afforded 8 as a viscous whitish liquid (44.8 g, 99%). IR (film): $\tilde{v} = 3105$, 2982, 1724, 1617, 1465, 1420, 1254, 1203 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.82 (s, 1 H, CH=C), 7.51 (d, J = 4.9 Hz, 1 H, 5- H_{arom}), 7.35 (d, J = 3.1 Hz, 1 H, 3- H_{arom}), 7.06 (t, J = 4.3 Hz, 1 H, 4-H_{arom}), 4.39 (c, *J* = 7.1 Hz, 2 H, CH₂CH₃), 4.28 (c, *J* = 7.1 Hz, 2 H, CH_2CH_3), 1.36 (t, J = 7.1 Hz, 3 H, CH_2CH_3), 1.31 (t, J =7.1 Hz, 3 H, CH₂CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 166.69 and 164.72 (2 CO), 136.51 (C-2arom), 135.04 (CH=C), 134.73 (C-5_{arom}), 132.03 and 128.17 (C-3, C-4)_{arom}, 122.88

(CH=*C*), 62.27 and 61.94 (2 CH₂), 14.55 and 14.33 (2 CH₃) ppm. EIMS: m/z (%) = 255 (6) [M + 1]⁺, 254 (38) [M⁺], 209 (51) [M⁺ – OEt], 182 (9), 164 (46) [M⁺ – 2 OEt], 136 (41) [M⁺ – C₅H₁₀O₃], 108 (100) [C₆H₄S]⁺, 82 (11), 69 (29). C₁₂H₁₄O₄S (254.30): calcd. C 56.68, H 5.55, S 12.61; found C 56.80, H 5.57, S 12.45.

3.1.2 (±)-(Thien-2-yl)succinic Acid (10): A solution of KCN (1.5 g, 23.1 mmol) in water (10 mL) was added to a solution of 8 (3 g, 11.8 mmol) in EtOH (50 mL), and the mixture was refluxed for 3 h, treated with a solution of NaOH (0.56 g, 14.0 mmol) in water (10 mL), and refluxed for a further 1 h, after which the ethanol was removed under reduced pressure while water was simultaneously added to maintain a constant volume. After cooling to 40 °C, the reaction mixture was brought to pH1 by addition of 6 N HCl (8 mL) and refluxed for 1 h, after which it was cooled to room temperature and then left overnight in a refrigerator. It was then extracted with EtOAc (3×80 mL), the organic extracts were washed with aqueous Na_2CO_3 (3×50 mL), and the combined aqueous phases were brought to pH 1 with 1 N H₂SO₄ and extracted with EtOAc (3×80 mL). The organic extract was dried with anhydrous Na₂SO₄, and concentration under reduced pressure then afforded a solid that was recrystallized from toluene as pure (\pm) -10 (2.19 g, 93%). M.p. 159–161 °C. IR (KBr): v = 3028, 2925, 2642, 1693, 1412, 1306, 1282, 1181 cm⁻¹. ¹H NMR (300 MHz, $[D_6]DMSO$): δ = 12.46 (br. s, 1 H, D₂O exch., CO₂H), 12.42 (br. s, 1 H, D₂O exch., CO_2H), 7.40 (dd, J = 4.9, 1.3 Hz, 1 H, 5-H_{arom}), 6.99–6.94 (m, 2 H, $3-H_{arom}$, $4-H_{arom}$), 4.15 (dd, J = 9.9, 5.2 Hz, 1 H, $CHCO_2H$), 2.95 and 2.66 (the AB part of an ABX system, $J_{AB} = 16.9$, $J_{AX} =$ 9.9, $J_{BX} = 5.2$ Hz, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 173.45 and 172.55 (2 CO), 140.93 (C-2_{arom}), 127.19, 125.89 and 125.37 (C-3,-4-5)_{arom}, 42.57 (CHCH₂), 38.33 (CHCH₂) ppm. EIMS: m/z (%) = 201 (0.02) [M + 1]⁺, 200 (0.75) [M⁺], 182 (62) $[M^+ - H_2O]$, 154 (100) $[M^+ - CO_2H]$, 113 (67), 110 (38) $[M^+ - 2]$ CO₂H], 97 (53), 85 (24), 58 (16). C₈H₈O₄S (200.21): calcd. C 47.99, H 4.03, S 16.02; found C 47.89, H 3.91, S 16.22.

3.1.3 (±)-(Thien-2-yl)succinic Anhydride (11): Acetyl chloride (12.33 mL, 0.17 mol) was added to 10 (2.6 g, 12.99 mmol) under argon, and the mixture was refluxed for 3 h. Concentration under reduced pressure by azeotropic codistillation with toluene then afforded 11 (2.32 g, 98%) as a brownish viscous liquid that crystallized upon cooling. M.p. 50–52 °C (toluene). IR (KBr): $\tilde{v} = 3099$, 3002, 2949, 2879, 1858, 1780, 1408, 1237, 1178 cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.33 \text{ (dd, } J = 5.0, 1.2 \text{ Hz}, 1 \text{ H}, 5 \text{-H}_{\text{arom}})$, 7.07–7.02 (m, 2 H, 3-H_{arom}, 4-H)_{arom}), 4.63–4.58 (m, 1 H, CHCO), 3.53 and 3.23 (the AB part of an ABX system, $J_{AB} = 18.7$, $J_{AX} =$ 10.1, J_{BX} = 7.0 Hz, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 170.31 and 168.22 (2 CO), 135.89 (C-2_{arom}), 127.90, 126.72 and 126.57 (C-3,-4,-5)_{arom}, 42.23 (CHCH₂), 37.32 (CHCH₂) ppm. EIMS: m/z (%) = 183 (0.91) [M + 1]⁺, 182 (11) [M⁺], 168 (2), 154 (4) $[M^+ - CO]$, 110 (100) $[C_6H_6S]^+$, 95 (3), 69 (10), 66 (12). C₈H₆O₃S (182.20): calcd. C 52.74, H 3.32, S 17.60; found C 52.68, H 3.42, S 17.48.

3.1.4 (±)-4-Oxo-5,6-dihydro-4*H*-cyclopenta[*b*]thiophene-6-carboxylic Acid (12): A solution of 11 (1.88 g, 10.32 mmol) in 1,2-dichloroethane (6 mL) was added dropwise under argon, over 40 min, to a solution of AlCl₃ (3.8 g, 28.5 mmol) in 9 mL of the same solvent. The mixture was stirred at room temperature for 5 h, poured into a mixture of ice and hydrochloric acid, and extracted with EtOAc (4×50 mL). The organic phase was extracted with aqueous Na₂CO₃ (3×50 mL), and the aqueous extract was acidified with 1 N HCl and extracted with EtOAc (4×50 mL). The combined organic phases were washed with water (3×60 mL) and dried with anhydrous Na₂SO₄, and concentration under reduced pressure then yielded 2.1 g of a viscous orange liquid that was chromatographed on silica gel (60 g) using 1:1 hexane/EtOAc (23×60 mL) as eluent. Recrystallization from EtOAc afforded **12** (1.09 g, 58%) as a white solid. M.p. 174.5–176 °C. IR (KBr): $\tilde{v} = 3114$, 3093, 2973, 2599, 1731, 1639, 1507, 1465, 1391, 1306, 1241, 1216 cm⁻¹. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 9.57$ (br. s, 1 H, D₂O exch., CO₂H), 7.70 (d, J = 5.0 Hz, 1 H, 2-H), 7.12 (d, J = 5.1 Hz, 1 H, 3-H), 4.50 (t, J = 5.0 Hz, 1 H, 6-H), 3.12 (d, J = 5.1 Hz, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 195.91$ (CO), 171.97 (CO₂H), 167.11 (C-6a), 145.62 (C-3a), 133.94 (C-2), 119.04 (C-3), 44.69 (C-5), 42.66 (C-6) ppm. EIMS: m/z (%) = 183 (6) [M + 1]⁺, 182 (54) [M⁺], 164 (42) [M⁺ - H₂O], 153 (11) [M⁺ - CO]], 137 (100) [M⁺ - CO₂H], 109 (34) [C₆H₅S]⁺, 84 (7), 82 (9), 69 (11), 65 (37), 63 (12). C₈H₆O₃S (182.20): calcd. C 52.74, H 3.32, S 17.60; found C 52.91, H 3.39, S 17.38.

3.1.5 (±)-Methyl 4-Oxo-5,6-dihydro-4H-cyclopenta[b]thiophene-6carboxylate (13): A solution of 12 (1.38 g, 7.58 mmol) in dry MeOH (40 mL) containing pTsOH (0.1 g, 0.53 mmol) was refluxed for 5 h under argon. Concentration to dryness then afforded 1.5 g of a viscous liquid residue that when chromatographed on silica gel (50 g) with hexane/EtOAc, 6:1 $(33 \times 40 \text{ mL})$ as eluent yielded a whitish liquid that crystallized in the refrigerator. Recrystallization from hexane/EtOAc afforded 13 (1.37 g, 92%) as a white solid. M.p. 58.5–61 °C. IR (KBr): \tilde{v} = 3566, 3085, 2953, 1750, 1706, 1517, 1458, 1436, 1394, 1321, 1252, 1206 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.39 (d, J = 5.1 Hz, 1 H, 2-H), 7.13 (d, J = 5.1 Hz, 1 H, 3-H), 4.38-4.35 (m, 1 H, 6-H), 3.80 (s, 3 H, OCH₃), 3.39 and 3.17 (the AB part of an ABX system, $J_{AB} = 18.5$, $J_{AX} = 7.4$, J_{BX} = 3.0 Hz, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 195.89 (CO), 170.92 (CO₂CH₃), 166.14 (C-6a), 137.83 (C-3a), 132.94 (C-2), 119.82 (C-3), 53.36 (CH₃), 44.77 (C-5), 42.67 (C-6) ppm. EIMS: m/z (%) = 197 (4) [M + 1]⁺, 196 (37) [M⁺], 164 (20) [M⁺ – OCH₃], 153 (18), 137 (100) [M⁺ - CO₂CH₃], 136 (56), 119 (16), 109 (30) [C₆H₅S]⁺, 97 (7), 69 (10), 65 (23). C₉H₈O₃S (196.22): calcd. C 55.09, H 4.11, S 16.34; found C 55.00, H 3.99, S 16.52.

3.1.6 (±)-Methyl 4-Hydroxyimino-5,6-dihydro-4H-cyclopenta[b]thiophene-6-carboxylate (14): A solution of hydroxylamine hydrochloride (0.55 g, 7.91 mmol) and sodium acetate (1.2 g, 8.82 mmol) in water (3 mL) was added to the keto ester 13 (0.87 g, 4.43 mmol), and EtOH was added until dissolution was complete (20 mL). This solution was refluxed for 5 h and cooled to room temperature, and after removal of EtOH under reduced pressure the solution was extracted with Et_2O (3×30 mL). The combined organic extracts were dried with anhydrous Na₂SO₄, and concentration under reduced pressure then afforded 14 (a mixture of E and Z isomers) as a white solid (0.90 g, 96%). M.p. 148–151 °C. IR (KBr): $\tilde{v} = 3200$, 3078, 2940, 2865, 1742, 1654, 1508, 1435, 1401, 1329, 1271, 1207 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) (two isomers apparent): δ = 8.12 (br. s, 1 H, D_2O exch., NOH), 7.36 (d, J = 4.9 Hz, 1 H, 2-H), 7.10 (d, J = 5.1 Hz, 1 H, 3-H), 4.27 (dd, J = 8.0, 3.6 Hz, 1 H, 6-H) 3.79 (s, 3 H, OCH₃), 3.69 and 3.54 (the AB part of an ABX system, $J_{AB} = 18.5$, $J_{AX} = 8.1$, $J_{BX} = 3.6$ Hz, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 172.14$ (CO₂Me), 157.83 (C=N), 150.97 (C-6a), 142.83 (C-3a), 132.37 (C-2), 119.05 (C-3), 53.13 (CH₃), 44.57 (C-6), 35.27 (C-5) ppm. EIMS: *m/z* (%) = 212 (15) [M $+ 1]^+, 212 (73) [M^+], 195 (8), 162 (13), 152 (100) [M^+ - CO_2CH_3],$ 135 (75) $[M^+ - C_2H_4O_3]$, 121 (14) $[M^+ - C_2H_4NO_3]$, 108 (20), 97 (8), 69 (10), 63 (15). C₉H₉NO₃S (211.24): calcd. C 51.17, H 4.29, N 6.63, S 15.18; found C 51.06, H 4.35, N 6.76, S 15.03.

3.1.7 (\pm)-*cis*-[4-Acetylamino-5,6-dihydro-4*H*-cyclopenta[*b*]thien-6-yl]methyl Acetate (15) and (\pm)-*trans*-[4-Acetylamino-5,6-dihydro-4*H*cyclopenta[*b*]thien-6-yl]methyl Acetate (16): AlH₃ was prepared by adding concentrated H₂SO₄ (99.99%, 0.8 mL, 15 mmol) dropwise at 0 °C to a 1 M solution of LiAlH₄ in THF (30 mL) and stirring the mixture vigorously for 1 h at room temperature.^[20] Once prepared, 11.5 mL (22.7 mmol) of AlH₃ was added dropwise at 0 °C under argon to a solution of 14 (0.5 g, 2.37 mmol) in dry THF (20 mL), and the mixture was stirred under reflux for 5 h. After addition of THF/H₂O (1:1, 15 mL) and water (20 mL) at 0 °C, stirring was continued while the mixture reached room temperature. The organic solvent was removed under reduced pressure, and the solid formed was filtered off and washed with EtOAc (3×40 mL). The aqueous filtrate was extracted with EtOAc (3×40 mL), and the combined organic phases were dried with anhydrous Na₂SO₄. Removal of the solvent under reduced pressure left 0.27 g of an oily residue that when chromatographed on silica gel (10 g) with 2:5 CH2Cl2/iPrOH as eluent afforded a 1:1 yellowish pasty mixture of 6 and 7 (0.22 g, 55%). This mixture (0.22 g, 1.3 mmol) was stirred with Ac₂O (3 mL) and dry Et₃N (3 mL) for 6 h under argon at room temperature, the resulting mixture was concentrated to dryness, and the solid residue was washed successively with saturated NaHCO₃ (3×20 mL) and water (3×40 mL), dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting pasty residue was chromatographed on silica gel (20 g) with hexane/ EtOAc (1:2) as eluent, affording a mixture of the acetates 15 and 16 as a yellow oil that crystallized upon standing at 5 °C (0.27 g, 83%). A sample subjected to fractional crystallization from hexane/ EtOAc (1:1) afforded pure 15 and pure 16 for analysis.

15: Reddish white solid, m.p. 123–125 °C. IR (KBr): \tilde{v} = 3282, 3072, 2961, 1743, 1638, 1557, 1371, 1234 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.21 (d, J = 5.0 Hz, 1 H, 2-H), 6.85 (d, J = 5.0 Hz, 1 H, 3-H), 6.01 (d, J = 7.3 Hz, D₂O exch., 1 H, NH), 5.33-5.26 (m, 1 H, 4-H), 4.21 and 4.04 (AB part of an ABM system, $J_{AB} = 10.6$, $J_{AM} = 8.13$, $J_{BM} = 6.25$ Hz, 2 H, OCH₂), 3.50– 3.46 (m, 1 H, 6-H), 3.10 (dt, J = 13.8, J = 8.0 Hz, 1 H, 5-H), 2.08 (s, 3 H, CH₃), 1.96 (s, 3 H, CH₃), 1.87 (dt, J = 13.8, J = 5.2 Hz, 1 H, 5-H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 171.27 and 169.98 (2 CO), 146.72 and 144.99 (C-3a,-6a), 130.43 (C-2), 121.80 (C-3), 68.12 (CH₂O), 50.44 (C-4), 42.08 (C-5), 40.19 (C-6), 23.68 and 21.30 (2×CH₃) ppm. EIMS: m/z (%) = 254 (7) [M + 1]⁺, 253 (6) $[M^+]$, 210 (9) $[M^+ - Ac]$, 193 (89), 167 (31) $[M^+ - 2Ac]$, 150 (99), 137 (16) $[M^+ - C_5H_8O_3]$, 133 (100), 122 (15) $[M^+ - C_5H_9NO_3]$ ppm. C12H15NO3S (253.32): calcd. C 56.90, H 5.79, N 5.53, S 12.66; found C 56.78, H 6.04, N 5.68, S 12.57.

16: Yellowish white solid, m.p. 100–102 °C. IR (KBr): $\tilde{v} = 3306$, 3050, 2943, 2889, 1731, 1638, 1538, 1385, 1252 cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.24 \text{ (d, } J = 5.0 \text{ Hz}, 1 \text{ H}, 2 \text{-H}), 6.86 \text{ (d, } J$ = 5.0 Hz, 1 H, 3-H), 5.85 (d, J = 7.3 Hz, D₂O exch., 1 H, NH), 5.38-5.31 (m, 1 H, 4-H), 4.18 and 3.99 (AB part of an ABM system, $J_{AB} = 10.5$, $J_{AM} = 8.3$, $J_{BM} = 6.3$ Hz, 2 H, OCH₂), 3.68–3.63 (m, 1 H, 6-H), 2.63 (ddd, $J_{\text{gem}} = 13.9$, $J_{\text{vic}} = 8.1$, $J_{\text{vic}} = 5.5$ Hz, 1 H, 5-H), 2.39 (ddd, $J_{gem} = 13.9$, $J_{vic} = 7.9$, $J_{vic} = 3.9$ Hz, 1 H, 5-H), 2.07 (s, 3 H, CH₃), 1.95 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 171.24$ and 170.02 (2 CO), 146.58 and 145.62 (C-3a, -6a), 130.53 (C-2), 121.85 (C-3), 67.81 (CH₂O), 50.58 (C-4), 42.45 (C-5), 40.14 (C-6), 23.67 and 21.27 (2 CH₃) ppm. EIMS: m/z (%) $= 254 (2) [M + 1]^{+}, 253 (1) [M^{+}], 210 (3) [M^{+} - Ac], 193 (53), 167$ (4) $[M^+ - 2 \text{ Ac}]$, 151 (30) $[M^+ - C_4H_6O_3]$, 137 (17) $[M^+ - C_5H_8O_3]$, 134 (100), 122 (25) $[M^+ - C_5H_9NO_3]$. $C_{12}H_{15}NO_3S$ (253.32): calcd. C 56.90, H 5.97, N 5.53, S 12.66; found C 57.07, H 6.06, N 5.42, S 12.50.

3.1.8 (\pm)-*cis*-*N*-[(6-Hydroxymethyl)-5,6-dihydro-4*H*-cyclopenta[*b*]thien-4-yl]acetamide (17) and (\pm)-*trans*-*N*-[(6-Hydroxymethyl)-5,6dihydro-4*H*-cyclopenta[*b*]thien-4-yl]acetamide (18): Potassium carbonate (1.88 g, 13.60 mmol) was added to a 1:1 solution of **15/16** (0.92 g, 3.64 mmol) in MeOH (12 mL), and the mixture was stirred for 2.5 h at room temperature and brought to pH 7 by addition of saturated NH₄Cl solution (40 mL). The organic solvent was removed under reduced pressure, and the solid formed was redissolved in water (60 mL). This solution was extracted with EtOAc (3×60 mL), and the combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated under reduced pressure. The solid residue so obtained was chromatographed on silica gel (22 g) with CH₂Cl₂/*i*PrOH (15:1) as eluent, it afforded first **17** (0.33 g, 43%) and then **18** (0.29 g, 38%).

17: M.p. 155–157 °C. IR (KBr): $\tilde{v} = 3276$, 2964, 1635, 1553, 1372, 1041 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.23$ (d, J = 4.9 Hz, 1 H, 2-H), 6.87 (d, J = 4.9 Hz, 1 H, 3-H), 6.35 (d, J = 7.6 Hz, 1 H, NH), 5.31 (dt, J = 8.4, J = 3.1 Hz, 1 H, 4-H), 3.86 and 3.69 (AB part of an ABM system, $J_{AB} = 10.4$, $J_{AM} = 4.3$, $J_{BM} = 3.5$ Hz, 2 H, OCH₂), 3.42–3.36 (m, 1 H, 6-H), 3.11 (dt, 1 H, J = 13.8, J = 8.4 Hz, 5-H), 2.21 (br. s, D₂O exch., 1 H, OH), 1.99 (dt, J = 13.8, J = 3.3 Hz, 1 H, 5-H), 1.92 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 169.72$ (CO), 147.98 and 145.14 (C-3a,-6a), 130.26 (C-2), 122.21 (C-3), 66.16 (CH₂O), 49.79 (C-4), 43.50 (C-6), 42.09 (C-5), 23.82 (CH₃) ppm. EIMS: m/z (%) = 152 (0.23) [C₈H₁₀SN], 138 (11) [C₇H₈SN], 122 (16), 58 (100). C₁₀H₁₃NO₂S (211.28): calcd. C 56.85, H 6.20, N 6.63, S 15.18; found C 57.11, H 6.11, N 6.68, S 15.07.

18: M.p. 94–96 °C. IR (KBr): $\tilde{v} = 3531$, 3254, 2925, 1612, 1562, 1261, 1057 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.24$ (d, J = 5.0 Hz, 1 H, 2-H), 6.88 (d, J = 5.0 Hz, 1 H, 3-H), 5.77 (d, J = 6.4 Hz, 1 H, NH), 5.39–5.33 (m, 1 H, 4-H), 3.79–3.52 (m, 3 H, OCH₂, 6-H), 2.67 (ddd, $J_{gem} = 13.8$, $J_{vic} = 7.8$, $J_{vic} = 4.7$ Hz, 1 H, 5-H), 2.35 (ddd, $J_{gem} = 13.8$, $J_{vic} = 7.8$, $J_{vic} = 4.1$ Hz, 1 H, 5-H), 2.02 (br. s, D₂O exch., 1 H, OH), 1.97 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 169.98$ (CO), 147.87 and 146.98 (C-3a,-6a), 130.26 (C-2), 121.98 (C-3), 66.83 (CH₂O), 50.80 (C-4), 43.61 (C-6), 42.30 (C-5), 23.76 (CH₃) ppm. EIMS: m/z (%) = 193 (33) [M⁺ - H₂O], 168 (3) [M⁺ - Ac], 152 (46) [C₈H₁₀SN], 138 (100) [C₇H₈SN], 122 (66) ppm. C₁₀H₁₃NO₂S (211.28): calcd. C 56.85, H 6.20, N 6.63, S 15.18; found C 56.94, H 6.26, N 6.59, S 15.09.

3.1.9 (±)-cis-(4-Amino-5,6-dihydro-4H-cyclopenta[b]thien-6-yl)methanol (6): A solution of 17 (0.132 g, 0.78 mmol) in a mixture of MeOH (3 mL) and 2 N HCl (3 mL) was refluxed for 8 h and then reduced to dryness by evaporation under reduced pressure followed by azeotropic distillation with EtOH (2×20 mL). The solid residue was dissolved in MeOH (4 mL), loaded on a 10 mL Amberlite IRA-400(OH) column, and eluted with MeOH (100 mL). Concentration of the eluate under reduced pressure left an oily residue that afforded 6 (0.042 g, 40%) as an orange oil after chromatography on silica gel (8 g) with dichloromethane/methanol (1:1) as eluent . IR (film): $\tilde{v} = 3346$, 2923, 1841, 1587, 1503, 1438, 1037 cm⁻¹. ¹H NMR (300 MHz, $[D_4]$ MeOH): δ = 7.30 (d, J = 4.9 Hz, 1 H, 2-H), 6.97 (d, J = 4.9 Hz, 1 H, 3-H), 4.34–4.29 (m, 1 H, 4-H), 3.78–3.52 (m, 3 H, OCH₂, 6-H), 3.16–2.88 (m, 1 H, 5-H), 1.98–1.81 (m, 1 H, 5-H) ppm. ¹³C NMR (75 MHz, [D₄]MeOH): δ = 149.05 and 145.08 (C-3a,-6a), 129.05 (C-2), 121.04 (C-3), 65.72 (CH₂O), 52.09 (C-4), 43.59 (C-6), 43.14 (C-5) ppm. EIMS: m/z (%) = 168 (0.62) $[M - 1]^+$, 152 (6) $[M^+ - OH]$, 138 (100) $[C_7H_8SN]$, 123 (19), 122 (95). HMRS *m*/*z* calcd. for [C₈H₁₁NOS] 169.0561, found 169.0569.

3.1.10 (\pm)-*trans*-(4-Amino-5,6-dihydro-4*H*-cyclopenta[*b*]thien-6-yl)methanol (7): A solution of 18 (0.104 g, 0.49 mmol) in a mixture of EtOH (2.5 mL) and 2 N HCl (2.5 mL) was refluxed for 24 h. Compound 7 (0.034 g, 41%) was obtained as a brown oil by a procedure analogous to that by which 6 was obtained from 17. IR (film): $\tilde{v} = 3344$, 2925, 1654, 1560, 1504, 1458, 1040 cm⁻¹. ¹H NMR (300 MHz, [D₄]MeOH): $\delta = 7.36$ (d, J = 5.02 Hz, 1 H, 2-H), 7.01 (d, J = 5.02 Hz, 1 H, 3-H), 4.49–4.41 (m, 1 H, 4-H), 3.68–3.49 (m, 3 H, OCH₂+6-H), 2.61–2.49 (m, 1 H, 5-H), 2.42–2.31 (m, 1 H, 5-H) ppm. ¹³C NMR (75 MHz, [D₄]MeOH): $\delta = 147.05$ and 146.11 (C-3a,-6a), 129.48 (C-2), 121.09 (C-3), 65.86 (CH₂O), 51.79 (C-4), 43.55 (C-6), 42.23 (C-5) ppm. EIMS: m/z (%) = 169 (12) [M⁺], 168 (3) [M – 1]⁺, 152 (7) [M⁺ – OH], 138 (100) [C₇H₈SN], 123 (6), 122 (24). HMRS m/z calcd. for [C₈H₁₁NOS] 169.0561, found 169.0571.

Supporting Information (see footnote on the first page of this article): The ORTEP plot of the structure of (\pm) -16 and the details of the reduction of hydroxyimino ester 14 is available.

Acknowledgments

The authors thank the Xunta de Galicia for financial support under projects PGIDT01 PXI20302PR and PGIDT02BTF20305PR.

- a) J. M. Colacino, K. A. Staschke, *Prog. Drug. Res.* **1998**, *50*, 259–322; b) M. V. Kolb, *Prog. Drug. Res.* **1997**, *48*, 195–232; c) E. De Clercq, *Curr. Med. Chem.* **2001**, *8*, 1543–1572; d) H. Tan, C. K. Chu, F. D. Boudinot, *Adv. Drug Delivery Rev.* **1999**, *39*, 117–151; e) T. S. Mansour, R. Storer, *Curr. Pharmaceutical Design* **1997**, *3*, 227–264.
- [2] a) E. Ichicawa, K. Kato, *Curr. Med. Chem.* 2001, *8*, 385–423;
 b) X.-F. Zhu, *Nucleosides, Nucleotides Nucleic Acids* 2000, *19*, 651–690;
 c) M. T. Crimmins, *Tetrahedron* 1998, *54*, 9229–9272;
 d) L. Agrofoglio, E. Suhas, A. Farese, R. Condom, S. R. Challand, R. A. Earl, R. Guedj, *Tetrahedron* 1994, *50*, 10611–10670.
- [3] a) Y. F. Shealy, J. D. Clayton, J. Am. Chem. Soc. 1966, 88, 3885–3887; b) Y. F. Shealy, J. D. Clayton, J. Am. Chem. Soc. 1969, 91, 3075–3083; c) Y. F. Shealy, J. D. Clayton, J. Pharm. Sci. 1973, 62, 1432.
- [4] T. Kusaka, H. Yamamoto, M. Shibata, M. Muroi, T. Kishi, K. T. Mizuno, J. Antibiot. 1968, 21, 255–261.
- [5] S. Yaginuma, N. Muto, M. Tsujino, Y. Sudate, M. Hayashi, M. Otani, J. Antibiot. 1981, 34, 359–366.
- [6] R. Vince, M. Hua, J. Med. Chem. 1990, 33, 17-21.
- [7] a) M. B. Faletto, W. H. Miller, E. P. Garvey, M. H. St. Clair, S. M. Daluge, S. S. Good, *Antimicrob. Agents Chemother.* 1997, 41, 1099–1107; b) R. H. Foster, D. Faulds, *Drugs* 1998, 729– 736; c) S. M. Daluge, M. T. Martín, B. R. Sickles, D. A. Livingston, *Nucleosides, Nucleotides Nucleic Acids* 2000, 19, 297–327.
- [8] a) D. F. Ewing, N.-E. Fahmi, C. Len, G. Mackenzie, A. Prauzo, J. Chem. Soc., Perkin 1 2000, 3561–3565; b) D. F. Ewing, N.-E. Fahmi, C. Len, G. Mackenzie, G. Ronco, P. Villa, G. Shaw, Nucleosides Nucleotides Nucleic Acids 1999, 18, 2613–2630.
- [9] L. Belmonte, P. Baré, M. M. E. De Bracco, B. H. Ruibal-Ares, *Curr. Med. Chem.* 2003, 10, 303–312.
- [10] a) M. J. Figueira, O. Caamaño, F. Fernández, J. M. Blanco, *Tetrahedron* 2002, 58, 7233–7240; b) M. I. Nieto, O. Caamaño, F. Fernández, G. Gómez, J. Balzarini, E. De Clercq, *Nucleosides, Nucleotides Nucleic Acids* 2002, 21, 243–255; c) F. Fernández, X. García-Mera, M. Morales, J.-E. Rodríguez-Borges, *Synthesis* 2001, 239–242; d) M. I. Nieto, J. M. Blanco, O. Caamaño, F. Fernández, C. López, X. García-Mera, J. Balzarini, E. De Clercq, *Nucleosides, Nucleotides Nucleic Acids* 1999, 18, 2253–2263.
- [11] a) J. M. Blanco, O. Caamaño, F. Fernández, J. E. Rodríguez-Borges, J. Balzarini, E. De Clercq, *Chem. Pharm. Bull.* 2003, 51, 1060–1063; b) J. M. Blanco, O. Caamaño, F. Fernández, X. García-Mera, A. R.-Hergueta, C. López, J. E. Rodríguez-Borges, J. Balzarini, E. De Clercq, *Chem. Pharm. Bull.* 1999, 47, 1314–1317.
- [12] G. Ferrand, J. Barbanton, 1986. Depin, J. C. Fr. Demande FR 2567125, Chem. Abstr. 105: 172281.

FULL PAPER

- [13] T. Imamoto, T. Matsumoto, H. Yokoyama, M. Yokoyama, K.-I. Yamaguchi, J. Org. Chem. 1984, 49, 1105–1110.
- [14] E. M. Berman, H. D. H. Showalter, J. Org. Chem. 1989, 54, 5642–5644.
- [15] a) E. Lee-Ruff, W.-Q. Wan, J.-L. Jiang, J. Org. Chem. 1994, 59, 2114–2118; b) H. Boumchita, M. Legraverend, E. Bisagni, *Heterocycles* 1991, 32, 1785–1792; c) K. Soai, A. J. Ookawa, J. Org. Chem. 1986, 51, 4000–4005.
- [16] (±)-(4-Hydroxyimino-5,6-dihydro-4*H*-cyclopenta[*b*]thien-6-yl)methanol (**19**). Viscous liquid. IR (film): $\tilde{v} = 3383, 2937, 2810, 1654, 1559, 1399, 1269 cm⁻¹. ¹H NMR (300 MHz, [D₆]-DMSO): <math>\delta = 10.45$ (s, D₂O exch., 1 H, NOH), 7.50 (d, J = 4.9 Hz, 1 H, 2-H), 7.00 (d, J = 4.9 Hz, 1 H, 3-H), 5.04 (t, J = 4.9 Hz, D₂O exch., 1 H, OH), 3.57–3.52 (m, 1 H, 6-H), 3.43–3.27 (m, 2 H, CH₂O), 3.21–3.13 (m, 1 H, 5-H), 2.74–2.67 (m, 1 H, 5-H) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 156.20$ (C=N), 155.21 (C-6a), 141.93 (C-3a), 131.55 (C-2), 118.33 (C-3), 65.01 (CH₂O), 42.24 (C-6), 34.94 (C-5) ppm. EIMS: m/z (%) = 184 (4) [M + 1]⁺, 183 (33) [M⁺], 152 (100) [M⁺ - NOH], 135 (70) [M⁺ - H₂NO₂]. HMRS m/z calcd. for [C₈H₉NO₂S] 183.0354, found 183.0346.
- [17] (±)-(4,5,6,7-Tetrahydrothieno[3,2-*b*]pyridin-7-yl)methanol (**20**). M.p. 145–147 °C. IR (KBr): $\tilde{v} = 3238, 2920, 1569, 1490, 1331, 1027 cm⁻¹. ¹H NMR (300 MHz, [D₆]DMSO): <math>\delta = 6.98$ (d, J =

5.2 Hz, 1 H, 2-H), 6.41 (d, J = 5.2 Hz, 1 H, 3-H), 5.08 (br. s, D₂O exch., 1 H, OH), 4.72 (t, J = 5.3 Hz, D₂O exch., 1 H, NH), 3.49–3.34 (m, 2 H, CH₂O), 3.09–3.03 (m, 2 H, 2×5-H), 2.88–2.81 (m, 1 H, 7-H), 1.88–1.79 (m, 1 H, 6-H), 1.72–1.63 (m, 1 H, 6-H) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 144.88$ (C-3a), 122.67 (C-2), 118.97 (C-3), 111.65 (C-7a), 66.88 (CH₂O), 39.11 (C-5), 36.79 (C-7), 26.07 (C-6). EIMS: *m*/*z* (%) = 170 (12) [M + 1]⁺, 169 (31) [M⁺], 151 (21) [M⁺ - H₂O], 138 (2) [M⁺ - CH₂OH], 123 (48) [M⁺ - CH₄NO], 108 (100). HMRS *m*/*z* calcd. for [C₈H₁₁NOS] 169.0561, found 169.0552.

- [18] M. N. Rerick, C. H. Trottier, R. A. Daignault, J. D. De Foe, *Tetrahedron Lett.* **1963**, *4*, 629–634.
- [19] A. R. Hergueta, C. López, F. Fernández, O. Caamaño, J. M. Blanco, *Tetrahedron: Asymmetry* 2003, 14, 3773–3778.
- [20] a) N. M. Yoon, H. C. Brown, J. Am. Chem. Soc. 1968, 90, 2927–2938; b) H. C. Brown, N. M. Yoon, J. Am. Chem. Soc. 1966, 88, 1464–1472.
- [21] CCDC-268240 (16) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Received: July 11, 2005 Published Online: November 21, 2005