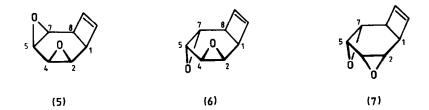
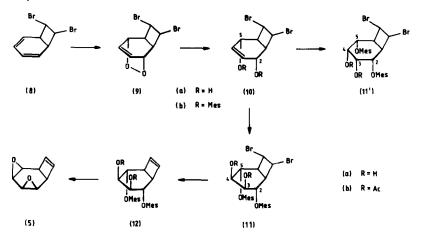
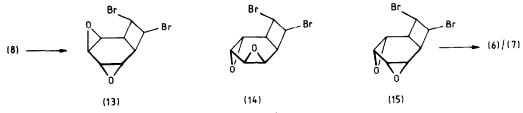

CIS - AND TRANS-DIOXA-TRIS-[2.1.1]-g-HOMOBENZENES

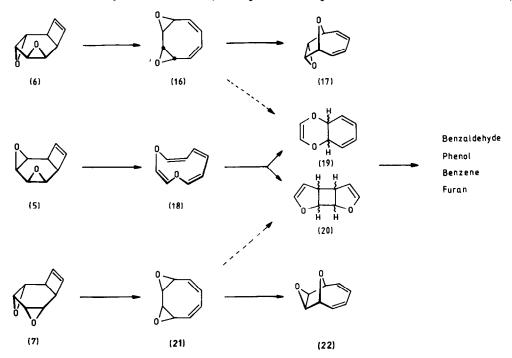

Horst Prinzbach^{*}, Manfred Maas, Hans Fritz, Gabrielle McMullen Chemisches Laboratorium der Universität Freiburg 1. Br., BRD

<u>Abstract</u>: The three dioxa-tris-[2.1.1]- σ -homobenzenes (5)-(7) have been synthesised. Preliminary thermolysis experiments in the gas-phase (350-400°C) allow a qualitative description of their thermal isomerisation processes.


We recently showed, that for the carbocyclic tris-[2.1.1]- σ -homobenzenes (1)/(3) (X=CH₂) the dis,dis,dis - and dis,con,con-[σ 2+ σ 2+ σ 2]-cycloreversion, resp., to Z,Z,Z-(2) and E,E,Z-cyclodecatrienone (4), resp., is clearly the kinetically favoured, ther-


mal stabilisation process ¹⁾. Whether the heterocyclic [2.1.1]-analogues (X=0,NTos) similarly undergo a specific and stereoselective $[\sigma_{2+\sigma_{2}+\sigma_{2}}]$ -cycloreversion, for which the activation barrier is expected to be about 20-40 kJ·mol⁻¹ higher ²⁾, is of theo-

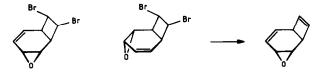
retical and preparative interest³). Here we describe the synthesis of the isomeric dioxa-tris-[2.1.1]-G-homobensenes (5)-(7) as potential precursors of the oxa- and azaframeworks. For the sterically "pretentious" (5) the reaction sequence $(8) \rightarrow (9) \rightarrow (10a) \rightarrow (10b) \rightarrow (11a) \rightarrow (11b) \rightarrow (12) \rightarrow (5)$ is, despite a number of limitations, a practicable approach, which makes use of (10a), a compound first prepared by <u>Kitahara et al</u>. through ${}^{1}0_{2}$ -addition to (8) and LAH-reduction of (9). The critical <u>cis</u>-hydroxylation step to give (11a) is not yet optimised; the bis-mesylate (10b) does react rapidly with KMn0₄ at -15° C (acetone) but the product, which precipitates with a preparative yield of round 80%, consists of an approx. 65:35 mixture of 39,49-(11a) and 3α ,4 α -diol (11a'). To date it has not been possible to separate this mixture, which, after quantitative conversion into the diacetates (11b)/(11b'), can be dehalogenated with Zn/I_{2} in DMSO to (12) in 30% (possibly improvable) yield. The considerable material loss during the double epoxide formation with 5% methanolic KOH solution $(20^{\circ}C, 25 \text{ min})$ was less expected (present yield 40%). It cannot be excluded, that the proximity of the cyclobutene C=C double bond and the nucleophilic centres leads to side reactions. In accord with the ¹H-NMR spectroscopic assignment of (11a), the all-<u>cis</u>-configuration of crystalline (5) (m.p. 66°C) is endorsed by the appropriate ring coupling: $J_{1,2}=J_{7,8}=4.0$ Hz. With m-chloroperbenzoic acid (m-CPBA) (CH₂Cl₂, 20°) (5) is stereospecifically epoxidised, whereby the 9_G, ll_G-configuration is provisionally preferred (m.p. 138-139°C).


(8) also serves as a precursor of (6) and (7). After two-fold and practically quantitative epoxidation (3 equiv. m-CPBA, $10-20^{\circ}C$)⁵⁾ the three diepoxides (13)/(14) (40%, m.p. 79-80°C; 10%, m.p. $108^{\circ}C$) and the known $(15)^{4,7}$ (45%) are isolated by column chromatography (Si0₂, CH₂Cl₂/CCl₄ 1:1). Upon dehalogenation (Zn/I₂, DMSO)(13) and (14), separately or as a mixture, yield the very low melting (m.p.26°C, 70%), unsymmetrical (6). The symmetrical (7) (m.p. $114^{\circ}C$, 75%) is obtainable from (15). (7), however, is available more efficiently by the almost uniform photolysis (high pressure mercury lamp, pyrex, acetone) of the <u>endo</u>-peroxide (9)⁸⁾ followed by dehalogenation (75%). In contrast to (5), (6) and (7) cannot be epoxidised stereospecifically; in

each instance a mixture (5:3 and 17:3, resp.) is formed and the NMR assignment of the individual components is not unequivocal. The coupling constants, $J_{1,2} = 5.0$, $J_{4,5} = 1.5$ and $J_{7,8} \sim 0$ Hz, and $|J_{1,2}+J_{1,7}| \sim 0$ Hz, are again typical for the proposed arrangement of the small rings around the basic 6-membered ring in (6) and (7), resp.

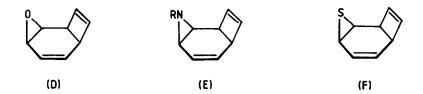
In view of the unstability of the potential $[\sigma_2+\sigma_2+\sigma_2]$ -cycloreversion products

(1,4-dioxacyclodeca-2,5,7,9-tetraenes (e.g. (18)) under the thermolysis conditions, no specific, mechanistic information could be expected. A number of observations pertaining to the gas-phase thermolyses (contact time approx. 0.1 sec) and pertinent for the ketones (1)/(3) are reported here: (5) is stable up to 300° C; at 340° C (approx. 60% conversion), the decomposition products, benzene (3%), phenol (13%), benzaldehyde (13%) and furan (6%), are obtained, together with a non-identified (polymeric) fraction. From (6) and (7), with comparable conversion (400° C), however with reduced polymer formation, the same decomposition products (benzene 11% and 15%, resp., benzaldehyde 7% (8%), phenol 7% (8%) and furan 3% (2%)) are produced but the major product is (17) (22%) and (22) (17%, m.p. 52°C), resp., an isomerisation product in each case. Based on comparisons with related isomeric cis- and trans- tris- σ -homobenzenes and annelated cyclobutenes 10° , one possible explanation of these results is,



that (5) undergoes the $[\sigma 2+\sigma 2+\sigma 2]$ -cycloreversion to (18), which affords the decomposition products via (19) and (20). In the case of (6) and (7) the cyclobutene \rightarrow butadiene opening to (16) and (21), resp., is likely to be the first step. <u>Anastassiou</u> et al. ¹¹⁾ have already shown, that at 200°C (16) is converted into (17).

The new compounds have been fully characterised (elemental analysis, ${}^{1}H_{-}$, ${}^{13}C_{-NMR}$, MS). Selected ${}^{1}H_{-NMR-data}$ ($C_{6}D_{6}$, 360 MHz) are presented: (5) §= 5.80 (9(10)-H), 2.80 (4(5)-H), 2.60 (2(7)-H), 2.54 (1(8)-H); (6):§ = 6.01 (10-H), 5.88 (9-H), 3.23 (5-H), 3.15 (4-H), 3.07 (8-H), 3.03 (7-H), 3.00 (2-H), 2.88 (1-H); (7): § = 5.59 (9(10)-H),2.95 (1(8)-H), 2.83, 2.59 (4(5)-, 2(7)-H); (22) (CDCl_3): § = 6.01 (2(5)-H), 5.93 (3(4)-H), 4.71 (1(6)-H), 3.75 (7(9)-H).


This work was supported by a Humboldt Fellowship to G. McMullen, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Our thanks also go to the BASF AG for a generous gift of cyclooctatetraene.

- 1) H. Prinzbach, H.-P. Schal, D. Hunkler, H. Fritz, Angew. Chem. <u>92</u>, 575 (1980); Angew. Chem. Int. Ed. Engl. 19, 567 (1980).
- 2) G. McMullen, G. Sedelmeier, R. Hildebrand, H. Fritz, H. Prinzbach, Tetrahedron Lett. 1979, 3847; H. Prinzbach, H.-P. Schal, D. Hunkler, Tetrahedron Lett. 1978, 2195.
- 3) R. Schwesinger, M. Breuninger, B. Gallenkamp, K.-H. Müller, D. Hunkler, H. Prinzbach, Chem. Ber. in press.
- 4) M. Oda, Y. Kayama, Y. Kitahara, Tetrahedron Lett, 1974, 2019.
- 5) Monoepoxides (A) and (B) are selectively formed with one equiv. of peracid at $0^{\circ}C^{\circ}$ and from them (C) is obtainable. Using well-tried procedures, the <u>cis</u>-

(A) bis-[2,1]-g-homobenzenes (D)-(F) were prepared from (A)-(C). (D) and (E) undergo $[\pi 2+\sigma 2+\sigma 2]$ -cycloreversion at 170°C (H. Prinzbach, M. Maas, W. Marterer, <u>in</u> preparation).

(R)

- 6) M. Oda, M. Oda, Y. Kitahara, Tetrahedron Lett. 1976, 839.
- 7) W. Adam, M. Balci, Tetrahedron <u>36</u>, 833 (1980).
- 8) The more laborious synthesis of (7) from the endo-peroxide $({}^{1}\text{H-NMR}(\text{CDCl}_{2}):\delta=6.30)$ (9(10)-H), 6.02 (3(4)-H), 4.83 (1(6)-H), 3.03 (2(5)-H)) of the thermally labile bicyclo[4.2.0]octa-2,4,7-triene 9) has also been realised.
- 9) E. Vogel, M. Kiefer, W.R. Roth, Angew. Chem. 76, 432 (1964); Angew. Chem. Int. Ed. Engl. 3, 442 (1964).
- 10) G.R. Branton, H.M. Frey, R.F. Skinner, Trans. Farad. Soc. 62, 1546 (1966); R. Criegee, Angew. Chem. 80, 585 (1968); Angew. Chem. Int. Ed. Engl. 7, 559 (1968).
- 11) A.G. Anastassiou, E. Reichmanis, J. Org. Chem. 38, 2421 (1973).

(Received in Germany 1 October 1980)