CONCLUSIONS

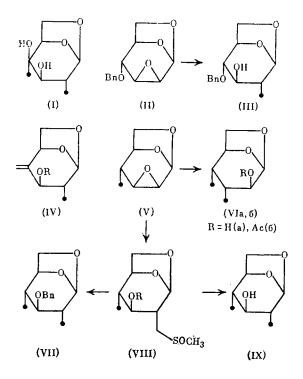
The enantioselective hydrogenation of the methyl ester of N-acetyl- α -aminocinnamic acid on a catalytic chiral system based on cobalt was effected in an optical yield of 60%, which increases with increase in the phosphine/Co ratio in the catalyst and decreases with increase in the degree of conversion.

LITERATURE CITED

- L. O. Nindakova, F. K. Shmidt, E. I. Klabunovskii, V. N. Sheveleva, and V. A. Pavlov, 1. Izv. Akad. Nauk SSSR, Ser. Khim., 2621 (1981).
- L. O. Nindakova, V. A. Pavlov, F. K. Shmidt, and E. I. Klabunovskii, Izv. Akad. Nauk 2. SSSR, Ser. Khim., 2094 (1982).
- R. F. Heck, U. S. Patent 3,270,087; Chem. Abstr., 65, 16857 (1966). 3.
- 4. F. K. Shmidt, V. V. Saraev, and V. S. Levkovskii, React. Kinet. Catal. Lett., 10, 195 (1979).
- V. V. Saraev, F. K. Shmidt, V. A. Gruznykh, L. O. Nindakova, Yu. S. Levkovskii, G. M. 5. Larin, and V. I. Dmitriev, Koordinats. Khim., 5, 1198 (1979). B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, and D. J. Weinkauff, J.
- 6. Am. Chem. Soc., 99, 5946 (1977).
- A. S. C. Chan and J. Halpern, J. Am. Chem. Soc., 102, 838 (1980). 7.
- A. M. Aguiar, C. J. Morrow, and J. D. Morrison, J. Org. Chem., 41, 1545 (1976). 8.

NEW METHOD FOR THE SYNTHESIS OF 2,4-DIDESOXY-2,4-DI-C-METHYL-D-GLUCOPYRANOSE DERIVATIVES

A. F. Sviridov, D. V. Yashunskii, UDC 542.91:547,455 M. S. Ermolenko, and N. K. Kochetkov


2,4-Didesoxy-2,4-di-C-methyl-D-glucopyranose derivatives are intermediates in the synthesis of many natural compounds, including macrolide antibiotics, pheromones, etc. [1, 2]. The known methods for their preparation, which consist of either the desoxy generation of the tertiary alcohol (I) or the catalytic reduction of the methylene derivative (IV) [3] or similar derivative [4], are not optimum due to the multistep synthesis of the starting compounds.

 α -Oxides are the most convenient compounds for obtaining branched sugars, and consequently the purpose of our studies was to find a convenient method for converting the readily available α -oxide (V) [5] to the desired 2,4-didesoxy-2,4-di-C-methyl-D-glucopyranose.

It is known [6] that various alkyl cuprates open the oxirane ring with a high degree of stereoselectivity. However, attempts to obtain compound (IX) by treating oxide (V) with cuprates of type Me₂CuL1, MeCuSPhLi, MeCuCECC₄H₉Li, and Me₂CuCNLi proved unsuccessful due to the competing opening of α -oxide (V) by the nucleophiles (C1⁻, Br⁻, CN⁻, SPh⁻) accompanying the cuprates.

Previously we had shown [7] that when treated with dimethylmagnesium the 4-0-benzyl analog of oxide (V) (compound (II)) is quantitatively converted to the gluco isomer (III). However, under analogous conditions the stereochemical result proved to be the reverse for α -oxide (V). The altrose isomer (VIa) was formed predominantly, since apparently attack by the nucleophile at the C^2 atom, needed for the formation of the gluco isomer (IX), is hindered by the axially oriented methyl group at C⁴, and alcohol (IX) was formed only in small amount (12%).

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 723-725, March, 1984. Original article submitted June 21, 1983.

The structure of the altrose isomer (VIa) follows from a comparison of the spectral data for (VIa), (VIb), and (IX). Thus, in the PMR spectrum of (VIb) the SSCC of the protons at C^2 and C^3 is equal to 10.5 Hz, which indicates their axial orientation, whereas for the equatorially oriented protons of alcohol (IX) at C^2 , C^3 , and C^4 the SSCC values are small (< 0.5 Hz) (cf. [3]).

In addition, in the ¹³C NMR spectrum of (VIb) the signal of the C¹ atom is shifted upfield when compared with its position in the ¹³C NMR spectrum of alcohol (VIa) (β -effect), which confirms the position of the OH group at C². As a result, attempts to insert the methyl group in one step in the 2 position proved unsuccessful.

It is known [8] that the dimethyl sulfoxide anion stereoselectively opens the α -oxides of sugars to give sulfoxides of type (VIII), whose methyl derivatives are obtained by desulfurization, for example, by Raney nickel. Actually, it proved that the treatment of (V) with a DMSO solution of dimsylsodium and subsequent desulfurization over skeletal nickel gives the gluco isomer (IX) in 80% yield (the formation of the altrose isomer (IVa) is not observed). Decomposition of the reaction mixture (after oxide (V) was opened by the dimsylsodium) using benzyl chloride and subsequent desulfurization gave the 3-0-benzyl ether (VII) in 50% yield.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were taken on a Bruker WM-250 instrument, using CDCl₃ as the solvent and TMS as the internal standard. The specific rotation was measured on a Perkin-Elmer-141 polarimeter in CHCl₃ solution. The reactions and purity of the obtained compounds were checked employing TLC on silica gel L (5-40 μ m) and GLC on a Biochrom-21 instrument (50-m-long glass capillary column packed with XE-60). The mixtures were separated by column chromatography on silica gel (25-40 μ m) using continuous linear gradients of the solvents at an excess pressure of 0.5-1.2 atm.

<u>1,6-Anhydro-3,4-didesoxy-3,4-di-C-methyl-β-D-altropyranose (IVa) and 1,6-Anhydro-2,4-didesoxy-2,4-di-C-methyl-β-D-glucopyranose (IX).</u> To a solution of 0.284 g of (2 mmoles) of (V) [5] in 2 ml of abs. Et₂O was added 4.5 ml of an 0.68 M solution (3 mmoles) of Me₂Mg [9] in Et₂O. The mixture was refluxed for \sim 10 h until all of the (V) had disappeared and then it was decomposed with NH₄Cl solution, the ether layer was separated, and the aqueous layer was extracted with 20 ml of ether. The combined organic extract was washed in succession with water and satd. NaCl solution, dried over Na₂SO₄, evaporated to dryness, and the residue was chromatographed. Yield of (VIa) 0.21 g (68%), mp 68-70°C (EA:hexane), $[\alpha]_D^{23}$ - 214.0° (C 1.0); yield of (IX) 0.037 g (12%), syrup, $[\alpha]_D^{22}$ 54.3° (C 1.0) (cf. [3]). ¹³C NMR spectrum (δ, ppm) for (VIa): 12.8 and 14.3 (CH₃ at C³ and C⁴) 34.5 (C³), 38.1 (C⁴), 68.2 (C⁶), 73.0 (C²), 79.2 (C⁵), 102.7 (C¹). Found: C60.8%; H9.1%, C₈H₁₄O₃. Calculated: C60.7%; H8.9%.

¹³C NMR spectrum (δ , ppm) for (VIb): 12.6 and 14.2 (CH₃ at C³ and C⁴), 20.9 (CH₃COO at C²), 30.3 (C³), 38.4 (C⁴), 68.6 (C⁶), 74.7 (C²), 78.9 (C⁵), 99.8 (C¹), 170.5 (CO). ¹H NMR spectrum (δ , ppm) for (VIb): 0.92 d (3H, J_{CH₃, = 7.5 Hz, CH₃ at C³), 1.08 d (3H, J_{CH₃}, = 7.5 Hz, CH₃ at C⁴), 1.78 m (1H, H⁴), 2.08 s (2H, CH₃COO at C²), 2.17 m (1H, H³), 3.82 d.d. (1H, J_{6exo,5} = 5 Hz, J_{6exo}, sendo = 7.5 Hz, H⁶_{exo}), 3.91 d.d. (1H, J_{6endo,5} = 1 Hz, H⁶_{exo}), 4.32 d. t. (1H, J_{5,4} = 1 , H⁵) 4.57 d.d. (1H, J_{2,3} = 10.5 Hz, J_{2,1} = 1,5 Hz, H²), 5.32 d (1H, H¹).}

<u>1,6-Anhydro-2,4-didesoxy-di-C-methyl- β -D-glucopyranose (IX).</u> To a solution of dimsylsodium in DMSO (1.7 N, 340 ml, 0.57 mole) was added a solution of 27 g (0.19 mole) of (V) in 50 ml of DMSO and the mixture was allowed to stand at $\sim 20^{\circ}$ C for 12 h until the (V) had had disappeared. The mixture was decomposed by the successive addition of 10 ml of water and excess solid CO₂, the DMSO was vacuum-distilled, the residue was dissolved in 200 ml of EtOH, 250 ml of Raney nickel was added, and the mixture was refluxed for 2 h. Then another 250 ml of Raney nickel was added and the mixture was heated for another 2 h. The nickel was filtered, washed with MeOH, the filtrate was evaporated, and the residue was purified by chromatography. Yield 24.5 g (81.5%), syrup, $[\alpha]_D^{23} - 56.2$ (C 1.0) (cf. [3]).

1,6-Anhydro-2,4-didesoxy-2,4-di-C-methyl-3-O-benzyl-β-D-glucopyranose (VII). To a solution of dimsylsodium in DMSO (0.89 N, 450 ml, 0.4 mole) was added a solution of 23.6 g (0.17 mole) of (V) in 50 ml of DMSO and the mixture was allowed to stand at \sim 20°C for 12 h, after which 9.5 ml (0.23 mole) of MeOH and 46 ml (0.4 mole) of BnCl were added. The mixture was stirred for 0.5 h and then decomposed with 200 ml of water, and the aqueous layer was separated and extracted with 3 × 150 ml of CHCl₃. The combined extract was washed with water, dried over Na₂SO₄, evaporated to dryness, the residue was dissolved in 200 ml of acetone, 100 ml of deactivated Raney nickel (by refluxing in acetone for 1 h) was added, and the stirred mixture was refluxed for 2 h, after which another 150 ml of the above deactivated Raney nickel was added, and the mixture was heated for another 2 h. The nickel was filtered, washed with MeOH, the solution was evaporated, and the residue was vacuum-distilled. Yield 20.5 g (50%), syrup , bp 134-140° (0.2 mm), $[\alpha]_D^{23}-58.5°$ (C 0.8). ¹H NMR spectrum (δ , ppm): 1.07 and 1.22 d (3H and 3H, J_{CH₃, 2 = J_{CH₃}, 2-J_{CH₃}, 2-J₅ S-S (C 0.8). ¹H NMR spectrum (δ , ppm): 4.22 d (1H, H⁶_{endo}), 4.26 d (1H, H⁵), 4.50 AB (2H, OCH₂Ph at C³), 5.30 s (1H, H¹), 7.32 s (5H, Ph). ¹³C NMR spectrum (δ , ppm): 16.8 and 18.9 (CH₃ at C² and C⁴), 38.0 and 38.7 (C² and C⁴), 67.6 (C⁶), 70.8 (OCH₂Ph at C³), 76.5 and 81.6 (C³ and C⁵), 104.1 (C¹).}

CONCLUSIONS

An efficient method was proposed for the synthesis of 2,4-didesoxy-2,4-di-C-methyl-D-glucopyranose.

LITERATURE CITED

- N. K. Kochetkov, A. F. Sviridov, and M. S. Ermolenko, Tetrahedron Lett., <u>22</u>, 4315 (1981).
- D. E. Plaumann, B. J. Fitzsimmons, B. M. Ritchie, and B. Fraser-Reid, J. Org. Chem., 47, 941 (1982).
- A. F. Sviridov, A. Ya. Shmyrina, O. S. Chizov, A. S. Shashkov, and N. K. Kochetkov, Bioorg. Khim., <u>6</u>, 1647 (1980).
- 4. S. C. Soares, A. Lagrange, A. Olesker, G. Lukacs, and T. T. Ton, J. Chem. Soc. Chem. Communs., 721 (1980).
- 5. A. F. Sviridov, G. E. Berdimbetova, and N. K. Kochetkov, Izv. Akad. Nauk SSSR, Ser. Khim., 2572 (1982).
- 6. D. R. Hicks and B. Fraser-Reid, Can. J. Chem., 53, 2017 (1975).
- A. Ya. Shmyrina, A. S. Shashkov, A. F. Sviridov, O. S. Chizhov, and N. K. Kochetkov, Bioorgan. Khim., <u>3</u>, 1349 (1977).
- 8. M. Sharma and R. K. Brown, Can. J. Chem., <u>46</u>, 757 (1968).
- 9. B. G. Christensen, R. G. Strahan, R. N. Trenner, B. H. Arison, R. Hirschmann, and J. M. Chemerda, J. Am. Chem. Soc., <u>82</u>, 3995 (1960).