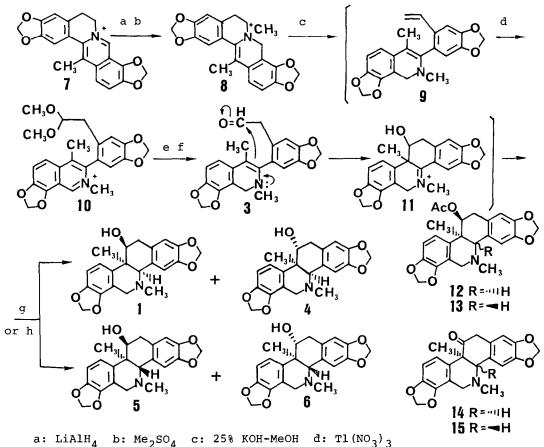

A BIOMIMETIC SYNTHESIS OF (\pm) -CORYNOLINE, (\pm) -11-EPICORYNOLINE, (\pm) -ISOCORYNOLINE, AND (\pm) -11-EPIISOCORYNOLINE FROM CORYSAMINE


Miyoji Hanaoka,^{*} Shuji Yoshida, and Chisato Mukai Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920, Japan

Summary: A novel and efficient synthesis of hexahydrobenzo[c]phenanthridine alkaloids, (+)-corynoline, (+)-11-epicorynoline, (+)-isocorynoline, and (+)-11-epiisocorynoline was accomplished from protoberberine alkaloid, corysamine through a biogenetic route.

Corynoline (1),¹⁾ a representative 10b-methylhexahydrobenzo[c]phenanthridine alkaloid,²⁾ has been isolated both as a racemate and (+)-form and shown to be biosynthesized³⁾ from the corresponding protoberberine alkaloid, tetrahydrocorysamine (2) <u>via</u> a hypothetical intermediate enamine-aldehyde (3). Three other diastereoisomeric alkaloids, 11-epicorynoline (4),⁴⁾ isocorynoline (5),^{1e,4-6)} and 11-epiisocorynoline (6),^{7,8)} have also been isolated. Several total synthesis of corynoline⁹⁻¹¹⁾ and its related alkaloids such as 12-hydroxycorynoline,⁹⁾ 11-epicorynoline,⁹⁾ 6-oxocorynoline,¹⁰⁾ isocorynoline,^{10,12)} and 11-epiisocorynoline¹⁰⁾ have been reported. However, no report has so far appeared on a synthesis of corynoline and its diastereoisomers according to the above biogenetic process. This communication deals with a first biomimetic transformation of a protoberberine alkaloid, corysamine into corynoline, 11-epicorynoline, isocorynoline, and 11-epiisocorynoline <u>via</u> a proposed biogenetic intermediate, enamine-aldehyde (3).

Oxygenation of the enamine (9),¹³⁾ the Hofmann degradation product of **8** derived from corysamine (7), with thallium (III) nitrate¹⁴⁾ in methanol at

e: NaBH, f: 15% HCl g: NaBH₃CN h: Zn-AcOH

room temperature for 30 min afforded the acetal (10). Successive treatments of the crude product (10) with sodium borohydride at 0°C for a few min, 15% hydrochloric acid in methanol at room temperature overnight, and then sodium cyanoborohydride at 0°C for 1 hr effected reduction of a C-N double bond in 10, deacetalization, cyclization, and further reduction of a C-N double bond in 11 to provide (\pm)-corynoline (1) [45% form 8; mp 219-220°C (lit.⁹⁾ 218-220°C); <u>m/z</u> 367 (M⁺); 6.92, 6.81 (1H each, AB-q, J=8.3 Hz), 6.66 (2H, s), 3.98 (1H, s), 3.38 (1H, d, J=1.2 Hz), 2.26 (3H, s), 1.15 (3H, s)] along with (\pm)-11-epicorynoline (4) [13% from 8; mp 191-192°C (lit.⁴⁾ 195.5-196.5°C); <u>m/z</u> 367 (M⁺); 4.56 (1H, dd, J=9.5; 7.1 Hz), 3.22 (1H, s), 2.19 (3H, s), 1.11 (3H, s)] via the enamine-aldehyde (3)³) and the iminium (11)³). Synthetic (\pm)-corynoline and (\pm)-11-epicorynoline, respectively. Acetylation of 1 with acetic anhydride in pyridine afforded (\pm)-acetylcorynoline (12) [mp 157-158°C

(lit.^{5a)} 158-159°C), $\underline{m/z}$ 409 (M⁺), 5.18 (1H, dd, \underline{J} =8.1, 6.7 Hz), 1.86 (3H, s)].

Reduction of 11 with zinc-acetic acid instead of sodium cyanoborohydride in the last step of the above reaction gave (\pm)-isocorynoline (5) [28% from 8; mp 204-205°C (lit.¹⁰⁾ 174-176°C); <u>m/z</u> 367 (M⁺); 4.51 (1H, s), 4.33 (1H, d, <u>J</u>=4.9), 3.22 (1H, dd, <u>J</u>=17.8, 4.9), 2.84 (1H, d, <u>J</u>=17.8) 2.49 (3H, s), 1.11 (3H, s)] accompanied with (\pm)-11-epiisocorynoline (6) [7% from 8; mp 185-186°C (lit.^{10,15)} 238-240°C); <u>m/z</u> 367 (M⁺); 3.97 (1H, s), 3.10 (1H, dd, <u>J</u>=17.1, 7.1), 2.81 (1H, dd, <u>J</u>=17.1, 10.0), 2.43 (3H, s), 1.19 (3H, s)] as well as 1 (4%) and 4 (7%). Acetylation of 5 gave (\pm)-acetylisocorynoline (13) [mp 178-180°C, <u>m/z</u> 409 (M⁺), 5.52 (1H, dd, <u>J</u>=5.1, 1.7 Hz), 1.77 (3H, s)]. Synthetic (\pm)-isocorynoline was identical with natural (+)-isocorynoline. ¹H-NMR spectral data of synthetic (\pm)-11-epicorynoline were in good agreement with those reported for natural alkaloid.⁷)

The Swern oxidation of 1 or 4 with trifluoroacetic anhydride in dimethyl sulfoxide afforded the ketone $(14)^{4,5b}$ in 77% or 72% yield, respectively. The product was reduced either with lithium aluminum hydride¹⁶) in tetrahydrofuran or with sodium cyanoborohydride in t-butanol in the presence of 15% hydrochloric acid to furnish stereoselectively (\pm)-corynoline (1) in 94% or 91% yield, respectively.¹⁷) On the other hand, similar reduction of the diastereoisomeric ketone (15), derived from 5 (84%) or 6 (75%), with lithium aluminum hydride afforded (\pm)-isocorynoline (5) (81%) along with (\pm)-11-epiisocorynoline (6) (10%), whereas that with sodium cyanoborohydride provided 5 (19%) and 6 (54%).

Thus, we developed a novel and biomimetic synthesis of corynoline, 11epicorynoline, isocorynoline, and 11-epiisocorynoline. As the starting protoberberine alkaloid is readily accessible and the reaction procedure is very simple, the present synthesis provides a general method for a synthesis of hexahydrobenzo[c]phenanthridine alkaloids.

ACKNOWLEDGEMENT: We are very grateful to Profs. N. Takao, Kobe Women's College of Pharmacy, I. Nishioka, Kyushu University, and I. Ninomiya, Kobe Women's College of Pharmacy for a generous supply of natural (+)-corynoline, (+)-isocorynoline, and ¹H-NMR spectrum of (+)-11-epicorynoline, respectively.

References and Note

a) R. H. F. Manske, J. Am. Chem. Soc., 72, 3207 (1950); b) C. Tani and N. Takao, Yakugaku Zasshi, 82, 594 (1962); c) N. Takao, Chem. Pharm. Bull.,

11, 1306 (1963); d) S. Naruto, S. Arakawa, and H. Kaneko, Tetrahedron
Lett., 1968, 1705; e) T. Kametani, M. Ihara, and T. Honda, Pytochemistry,
10, 1881 (1971); f) N. Takao, K. Iwasa, M. Kamigauchi, and M. Sugiura,
Chem. Pharm. Bull., 24, 2859 (1976); g) N. Takao, M. Kamigauchi, and K.
Iwasa, Tetrahedron, 35, 1977 (1979).

- V. Šimánek, "The Alkaloids," Vol. 26, ed. by A. Brossi, Academic Press, New York, 1985, p185.
- 3) A. Yagi, G. Nonaka, S. Nakayama, and I. Nishioka, Phytochemistry, 16, 1197 (1977); E. Leete and S. J. B. Burrill, ibid., 6, 231 (1967); A. R. Battersby, J. Staunton, M. C. Summers, and R. Southgate, J. Chem. Soc., Perkin Trans. 1, 1979, 45; N. Takao, M. Kamigauchi, and M. Okada, Helv. Chim. Acta, 66, 473 (1983). and references cited therein.
- 4) G. Nonaka and I. Nishioka, Chem. Pharm. Bull., 23, 521 (1975).
- 5) a) G. Nonaka, H. Okabe, I. Nishioka, and N. Takao, Yakugaku Zasshi, 93, 87 (1973); b) N. Takao, H. W. Bersch, and S. Takao, Chem. Pharm. Bull., 21, 1096 (1973).
- 6) This alkaloid is also named as 14-epicorynoline.
- 7) W. Zeng, W. Liang, C. He, Q. Zheng, and G. Tu, Phytochemistry, 27, 599 (1988).
- This alkaloid was originally named as 13-epicorynoline, however, it is better to designate it as 11-epiisocorynoline.
- I. Ninomiya, O. Yamamoto, and T. Naito, J. Chem. Soc., Perkin Trans. 1, 1980, 212.
- 10) M. Cushman, A. Abbaspour, and Y. P. Gupta, J. Am. Chem. Soc., 105, 2873 (1983).
- 11) M. Cushman and J.-K. Chen, J. Org. Chem., 52, 1517 (1987).
- 12) J. R. Falck, S. Manna, and C. Mioskowski, J. Am. Chem. Soc., 105, 631 (1983).
- 13) M. Hanaoka, S. Yoshida, and C. Mukai, J. Chem. Soc., Chem. Commun., 1984, 1703.
- 14) A. Mckillop, J. D. Hunt, F. Kienzle, E. Bigham, and E. C. Taylor, J. Am. Chem. Soc., 95, 3635 (1973).
- 15) The spectral data of the previous synthetic product¹⁰⁾ are not coincident with those of natural product.⁷⁾
- 16) cf. M. Onda, K. Yuasa, and J. Okada, Chem. Pharm. Bull., 22, 2365 (1974).
- 17) The Meerwein-Ponndorf Reduction of the ketone (14) derived from natural corynoline afforded 1 and 4 in a ratio of 1:5.^{5b}

(Received in Japan 4 October 1988)