Note

____ .

Synthesis and conformation of 5-thio-D-glucal, an inhibitor of glycosidases

WALTER KORYTNYK, NORMAN ANGELINO, ONDA DODSON-SIMMONS, MICHAEL HANCHAK, MICHAEL MADSON, AND STEFICA VALENTEKOVIC-HORVATH

Department of Experimental Therapeutics, Roswell Park Memorial Institute, 666 Elm Street, Buffalo, NY 14263 (U.S.A.)

(Received August 9th, 1982; accepted for publication, August 31st, 1982)

Molecules whose geometry resembles that of the transition state in enzymecatalyzed reactions are known to be excellent enzyme-inhibitors. Carbohydrate substrates of glycosidases are known to produce a carboxonium ion in the transition state, the geometry of which probably resembles that of a flattened, half-chair conformer. As the conformation of glycals is also a half-chair, somewhat resembling the transition state, these and similar compounds have been of considerable interest as inhibitors of glycosidases (reviewed by Flowers and Sharon¹).

D-Glucal (1,5-anhydro-2-deoxy-D-*arabino*-hex-1-enitol) was found² to inhibit competitively the α -D-mannosidase of sweet-almond emulsin with a K_i of 10mm. Subsequently, glycosidases were found to catalyze the hydration of the double bond in D-glycals, to afford 2-deoxy sugars, as well as rearrangement products. Thus, Lehmann and Schröter³ reported that sweet-almond β -D-glucosidase catalyzes the hydration of D-glucal to 2-deoxy-D-*arabino*-hexose, and Hehre *et al.*⁴ elucidated the stereochemistry of the hydration of D-glucal by both γ - and β -D-glucosidases.

Hence, it was of interest to synthesize a sulfur analog 3 of D-glucal, which was expected to be a transition-state inhibitor of D-glucosidases and D-mannosidases, with, however, somewhat changed properties. In addition to possible effects of the sulfur atom on the conformation, the reactivity of the 1,2 double bond in 3 would be lessened, because of the lower electronegativity of sulfur compared to that of oxygen.

We have utilized the classical synthesis of glycals in which the per-O-acetylated bromide (1) of 5-thio-D-glucose was treated with Zn in acetic acid, resulting in a good yield of 3.4,6-tri-O-acetyl-5-thio-D-glucal (2). Deacetylation of 2 gave 5-thio-D-glucal (1,5-anhydro-2-deoxy-5-thio-D-arabino-hex-1-enitol, 3).

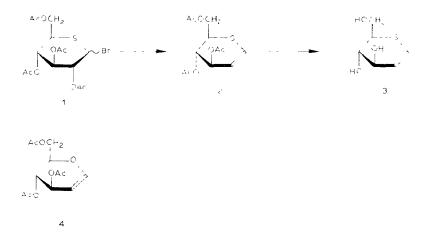

The conformation of 3,4,6-tri-*O*-acetyl-D-glucal (4) has been established as being ${}^{4}H_{5}$ by X-ray crystallography⁵. ¹H-N.m.r. investigations of 4 in solution have been interpreted as indicating an equilibrium mixture of two half-chair forms⁶, *viz.*, ${}^{4}H_{5}$ and ${}^{5}H_{4}$, although, earlier, these data had been interpreted in terms of a

TABLE I

Compound	Chemical shifts $(\delta)^a$ (first-order couplings, Hz, in parentheses)										
	H-1		H-2	Н-3	H-4	H-5	H-6	H-6'	Acetyl CH ₃		
	$(J_{1,2})$	(J _{1,3})	(J _{2,3})	(J _{3,4})	(J _{4,5})	(J _{5,6})	(J _{5,6'})	$(\mathbf{J}_{6,6'})$			
2 ^b	6.27q		5.72q	5.35 (unresolved m)	5.35 (unresolved m)	3.640	4.33q	4.27q	2.05s, 2.08s, 2.10s		
	(10.64)	(1.06)	(3.54)	(n.d.)	(7.72)	(6.85)	(6.10)	(11.23)			
3c	6.70g		6.18q	4.690	4.38m	3.92m	4.38m	4.38m			
	(10.0)	(1.8)	(2.8)	(7.2)	(9.0)	(6.4)	(4.6)	(n.d.)			
D-Glucal ^e	6.86m		5.26	4.65m	4.14m	4.35m	4.31m	4.31m			
	(6.1)	(1.6)	(2.2)	(6.8)	(n.d.)	(n.d.)	(n.d.)	(n.d.)			

CHEMICAL SHIFTS AND COUPLING CONSTANTS OF 5-THIO-D-GLUCAL (3) AND DERIVATIVE

^aSignal multiplicities: d, doublet; m, multiplet; o, octet; q, quartet; s, singlet. ^bDetermined at 400 MHz, in CDCl₃, using internal tetramethylsilane. ^cDetermined at 100 MHz, in D₂O, from external tetramethylsilane; n.d., not determined.

distorted, half-chair form^{7.8}. The ¹H-n.m.r. spectrum of **2** (the corresponding 5-thio analog) could not be completely resolved, even at 400 MHz, but the deacetylated derivative **3** provided first-order coupling-constants for the ring protons (see Table I). A comparison of $J_{2,3}$, $J_{3,4}$, and $J_{4,5}$ of the latter (2.8, 7.2, and 9.0 Hz, respectively: see Table I) with the coupling constants published for 3,4,6-tri-*O*-acetyl-D-glucal (3.2, 5.8, and 7.8 Hz, respectively⁵) suggested that both compounds exist as a mixture of the aforementioned two half-chair forms, in which the ⁴H₅ form preponderates for the thio analog.

 13 C-N.m.r. resonances and one-bond, C-H couplings of the 5-thio-D-glucals are summarized in Table II and are compared with those of **4** and D-glucal. Replacement of O by S dramatically affects the ring-carbon resonances, particularly those of C-1 and C-5. Likewise, the corresponding, one-bond coupling-constants are much smaller for the sulfur derivatives, as expected from the decreased electronegativity of sulfur.

The double bond in 2 and 3 was found to be much less reactive than that in ordinary glycals. Thus, 2 was resistant to fluorination⁹ with $XeF_2 BF_3$, as well as to BF_3 -catalyzed, azide formation, which is known to occur with the corresponding

TABLE II

¹³C-N.M.R. SPECTRA OF COMPOUNDS 2, 3, AND 4, AND D-GLUCAL

· _ ·		-						
Compound	$C-I(\mathbf{J}_{CH})$	C-2 (J _{CII})	С-З (J _{CH})	C -4 (\mathbf{J}_{CH})	$C-5~(\mathbf{J}_{\rm CR})$	С-6 (Ј _{СН})		
-						·		
2^a	123.4(177)	117.9(168)	68.1(154)	68.0(154)	40.4(141)	62.4(152)		
3 ^b	121.7(176)	123.6(172)	70 9(145)	71.7(158)	47.0(140)	61.9(145)		
4 ^c	145.4(192)	98.9(170)	67.4(155)	67.2(155)	73.9(152)	61.3(152)		
D-Glucal ^b	144.6(188)	103.8(161)	69.3(152)	69.9(151)	79,2(150)	61 2(146)		

^{*a*}Determined at 25.2 MHz, in CDCL, from tetramethylsilane as internal standard; $\delta_{M^{\mu}}$ of acetates 20.6, 20.8; δ_{CO} 169.4, 169.7, ^{*b*}Determined at 25.2 MHz, in D₂O, from tetramethylsilane as external standard. (Determined as in footnote a, $\delta_{M^{\mu}}$ of acetates 20.8, 21.0; δ_{CD} 169.3, 170.1, 170.3.

glycals¹⁰. In addition, attempts to obtain the 2-deoxy derivative of 5-thio-D-glucose by the acid-catalyzed hydration of the double bond¹¹ in 3 were unsuccessful, due to polymerization and degradation of the starting material.

In view of this unreactivity of the double bond, and the similarity of the conformation of 5-thio-D-glucal (3) with that of D-glucal, it was of interest to study the interaction of 3 with D-glucosidases and D-mannosidases. On incubation for 60 h with β -D-glucosidase from almonds, 5-thio-D-glucal was recovered unchanged, whereas Lehmann and Schröter³ found substantial hydration of the double bond in Dglucal with this enzyme. Neverthelcss, D-glucal and its thio analog 3 were found to be competitive inhibitors of the enzyme, with K_i values of 9.7 (\pm 1.7) and 6.3 (\pm 2.8) mM, respectively. 5-Thio-D-glucal (3) was also found to be a competitive inhibitor of the α -D-mannosidase from jack beans, with a K_i of 3.9 \pm 1.0mM, which compares favorably with the reported K_i of 10mM for D-glucal, and that found by us for the latter (13.8 \pm 3mM, by competitive-inhibition kinetics).

Thus, 5-thio-D-glucal (3) was found not to be a substrate, but a competitive inhibitor of glycosidases. This may be due to the relative, chemical inertness of its double bond as compared to that in D-glucal on the one hand and its conformational similarity to it on the other. Because sulfur is a poor hydrogen-bond acceptor, a hydrogen bond to the ring-oxygen atom, also, does not appear to be important in the binding of inhibitors, or substrates, of the glycosidases investigated.

EXPERIMENTAL

General methods. — (a) Chemical methods. Melting points (uncorrected) were determined by the capillary method; i.r. spectra were recorded with a Perkin– Elmer 457 spectrophotometer, and ¹H-n.m.r. spectra, with a Varian XL-100 instrument operated in the F-t mode at 100 MHz. The latter instrument was also used for recording ¹³C-n.m.r. spectra at 25.2 MHz. Positions of peaks are expressed in δ from the signal of tetramethylsilane as the internal standard. Assignment of ¹³Csignals was achieved by off-resonance, proton decoupling. Residual couplingconstants (J_R) were measured at two decoupler offsets which flanked the proton resonances. A computer program (based on the mathematical treatment of Mac-Donald and Mazurek¹²) was used to calculate the decoupling intensity (K) in Hz, from a compound having a known value of ¹ J_{CH} ; then the residual coupling-constants and K were used to calculate ¹ J_{CH} and the frequency s of the associated proton for each carbon signal. Ambiguities arise where proton chemical-shifts almost coincide, or where extensive overlap in the off-resonance, ¹³C spectrum creates errors in measurements of J_R .

Optical rotations were determined with a Perkin–Elmer 141 polarimeter. Thinlayer chromatograms were obtained with plates of Merck MF-254 silica gel, the spots being detected by u.v. absorption, or by spraying with a sulfuric acid solution.

(b) Enzyme procedures. α -D-Mannosidase (α -D-mannoside mannohydrolase, (EC 3.2.1.24) from jack beans was a commercial product (Sigma) containing 20

units of enzyme per mg of protein. The substrate used was *p*-nitrophenyl α -D-mannopyranoside, and the assay procedure, that of Li and Li¹⁴: K_m 5.7 \pm 3mM. β -D-Glucosidase (emulsin; β -D-glucoside glucohydrolase, EC 3.21.21) from almonds was a commercial product (Sigma) containing ~ 5 units of enzyme per mg of protein. The substrate used was *p*-nitrophenyl β -D-glucopyranoside, and it was assayed according to Schwartz *et al.*²; K_m 0.9 \pm 0.2mM.

The enzyme kinetic data were analyzed with a Hewlett-Packard HP-85 microcomputer, using a nonlinear, regression-curve-fitting package developed by Greco *et al.*¹⁵.

3,4,6-Tri-O-acetyl-5-thio-D-glucal (2). – 1,2,3,4,6-Penta-O-acetyl-5-thio- α -D-glucopyranose (650 mg. 1.7 mmol) was dissolved in CH₂Cl₂ (10 mL), a freshly prepared, saturated solution of HBr in glacial acetic acid (2 mL) was added, and the solution kept overnight at 0⁻⁵. After evaporation *in vacuo*, the residual, crude bromide^{1,6} was dissolved in glacial acetic acid (10 mL), Zn dust (1.2 g) was added, and the mixture was stirred for 2.5 h at room temperature, filtered, and the filtrate evaporated. A solution of the residue in ethyl acetate was successively washed with NaHCO₃ solution and water, and dried (Na₂SO₄). Chromatography on a column of silica gel (20 g) with 2:1 ether-pet. ether gave **2** (69⁶), which crystallized from hexane; m.p. 43–44^o, $[\alpha]_{D}^{22} = 47.1^{\circ}$ (*c* 1, chloroform).

Anal. Calc. for C₁₂H_{1b}O₆S: C, 49.99; H, 5.59; S, 11.12. Found: C, 49.94; H, 5.42; S, 11.33.

5-Thio-D-glucal (3). --- To a solution of 2 (186 mg, 0.65 mmol) in methanol (10 mL) was added methanolic 0.1M sodium methoxide (1 mL). After 1 h at room temperature, the solution was treated with Amberlite IR-120 (H⁺) resin, and evaporated. The oily residue was dissolved in methyl formate, affording crystalline 3 (57 mg, 54°_{10}); m.p. 83-86°, $[\alpha]_{D}^{22} + 17.3^{\circ}$ (c 1, methanol).

Anal. Calc. for C₆H₁₀O₃S: C, 44.43; H, 6.21. Found: C, 44.43; H, 6.25.

ACKNOWLEDGMENT

This study was supported by USPHS Grants CA-08793 and CA-13038.

REFERENCES

- 1 H. M. FLOWERS AND N. SHARON, Adv. Enzymol., 48 (1979) 29-65.
- 2 J. SCHWARTZ, J. SLOAN, AND Y. C. LEE, Arch. Biochem. Biophys., 137 (1970) 122-127.
- 3 J. LEHMANN AND E. SCHROTER, Carbohydr. Res., 23 (1972) 359-368.
- 4 E. J. HEHRE, D. S. GENHOF, H. STERNLICHT, AND C. F. BREWER, Biochemistry, 16 (1977) 1780-1787.
- 5 K. VANGEHR, P. LUGER, AND H. PAULSEN, Carbohydr. Res., 70 (1979) 1-11.
- 6 M. RICO AND J. SANTORO, Org. Magn. Reson., 8 (1976) 49-55.
- 7 L. D. HALL AND L. F. JOHNSON, Tetrahedron, 20 (1964) 883-889.
- 8 A. A. CHALMERS AND R. H. HALL, J. Chem. Soc., Perkin Trans. 2, (1974) 728-732.
- 9 (a) W. KORYTNYK AND S. VALLNIEKOVIC-HORVATH, Tetrahedron Lett., (1980) 1493-1496; (b) W. KORYTNYK, S. VALENIEKOVIC-HORVATH, AND C. R. PETRIE III, Tetrahedron, 38 (1982) 2547-2550.
- 10 K. HEYNS AND R. HOHLWFG, Chem. Ber., 111 (1978) 1632-1645.

- 11 W. G. OVEREND, M. STACEY, AND J. STANĚK, J. Chem. Soc., (1949) 2841-2845.
- 12 J. C. MACDONALD AND M. MAZUREK, J. Magn. Reson., 28 (1977) 181-190.
- 13 Y.-T. LI, J. Biol. Chem., 242 (1967) 5474-5480.
- 14 Y.-T. LI AND S.-C. LI, J. Biol. Chem., 247 (1972) 3677-3688.
- 15 W. R. GRECO, R. L. PRIORE, M. SHARMA, AND W. KORYTNYK, Comput. Biomed. Res., 15 (1982) 39-45.
- 16 W. KORYTNYK, S. VALENTEKOVIC-HORVATH, AND O. DODSON-SIMMONS, *Carbohydr. Res.*, 108 (1982) 293–297.