INVESTIGATIONS INTO THE TOTAL SYNTHESIS OF INSECT ANTIFEEDANT CLERODANES THE TOTAL SYNTHESIS OF \pm 4-epi Ajugarin

J M. Luteijn and Ae.de Groot*

Agricultural University, Department of Organic Chemistry, De Dreijen 5, 6703 BC Wageningen, The Netherlands

Summary Starting from alcohol 3, a stereospecific synthesis of carboxylic acid $\underline{2}$ is described. This acid $\underline{2}$ is a key intermediate in the total synthesis of ajugarins and its conversion into $\underline{+}$ 4-epi ajugarin is reported.

A number of clerodane diterpenes, as represented by ajugarin $I^{1,2}$, (<u>1</u>) and clerodin³, possess insect antifeedant activity. During the last few years several papers on synthetic approaches towards these compounds^{4,5,6} and of several types of model compounds^{7,8} have appeared. Recently we published the synthesis of an interesting model compound for ajugarin I⁹. The communication of Kende and Roth⁶ on the total synthesis of ajugarin IV prompts us to report on our synthesis of 4-epi ajugarin I and on our efforts towards the total synthesis of ajugarin I, following the scheme outlined below.

The alcohol $\underline{3}^{*}$ was chosen as the starting material¹⁰. Oxidation with Jones' reagent afforded the carboxylic acid in high yield, which was converted into the methyl ester $\underline{4}$ on treatment with diazomethane Allylic oxidation (chromic acid in acetic acid, 60% yield) of $\underline{4}$ gave the enone $\underline{5}$, which was hydrogenated in quantitative yield (Pd/C) to the ketone $\underline{6}$ Reduction of this compound with lithium tri-t-butoxy aluminium hydride gave a mixture of the equatorial and axial alcohols

86-87⁰C) in 71% yield and the axial acetate 8 (m p 121-123⁰) in 18% yield

a Jones' reagent, b: CH_2N_2 , c CrO_3 , AcOH; d: H_2Pd/C , e $LiH(tBuo)_3A1$; f· H_3O^+ ; g: Py, Ac₂O, DAP.

Treatment of the acetate $\underline{7}$ with pyridine hydrochloride in refluxing acetic anhydride¹¹ gave the chlorodiacetate $\underline{9}$ in high yield. Dehydrohalogenation of this compound with DBN in refluxing xylene afforded the carboxylic acid $\underline{10}$ (m.p. $165-166^{\circ}$ C) in relatively low yield (40%). On reaction of $\underline{7}$ with pyridine hydrobromide the olefin $\underline{11}$ was obtained in 66% yield next to some starting material (30%), thus avoiding the troublesome DBN reaction.

a PyHCl, Ac₂O, \triangle , b DBN, δ , c. PyHBr, Ac₂O, \triangle ; d: OH⁻, H₂O, MeOH, e: Py, Ac₂O, DAP, f H₂O, Py

Hydrolysis followed by reacetylation gave <u>10</u> This carboxylic acid was converted into its potassium salt and reacted with oxalyl chloride to give the acid chloride <u>12</u> Reaction of this compound with diazomethane followed by hydrolysis of the intermediate diazoketone gave the hydroxy ketone <u>13¹²</u>. The overall yield of these conversions (*i.e.* 10 \rightarrow 13) was 73% Treatment of 13 with triphenylphosphoranylidene ketene gave the butenolide <u>14</u> (m.p. 165-167^oC) in 92% yield¹³

In our previous paper we reported the epoxidation of the 9β -methyl analogue of $\underline{14}^9$. In that reaction both epimeric spiro epoxides were formed using *m*-chloroperbenzoic acid. It was expected that in the present case again both isomers would be formed, thus leading to $\underline{15}$ and ajugarin I Epoxidation of $\underline{14}$ with *m*-chloroperbenzoic acid in ether however afforded the epoxide $\underline{15}$ (m p 170-171⁰C) as sole product.

Alternatively the stereospecific epoxidation reaction using V^{5^+} and *t*-butylhydroperoxide could be used to bring about the right stereochemistry at C-4¹⁴ Prior to this the acetates in <u>14</u> have to be hydrolysed. Unfortunately both acid and base catalysed hydrolysis of <u>14</u> gave rise to the formation of numerous products. The butenolide proved unstable under basic conditions, while acidic conditions caused rearrangement of the olefinic bond

Attempts to protect the butenolide in $\underline{14}$ were unsuccesful and therefore we tried to circumvent the problem by performing the acetate hydrolysis in an earlier stage of the synthesis

a: MED, TSOH, b OH⁻, H₂O, c H₃O⁺, d Ph₃P=C=C=O, e V⁵⁺, t-BuOOH, f AC₂O, Py, DAP

Base catalysed hydrolysis of the hydroxy ketone 13 was unsuccessful as well since a Favorskii rearrangement occurred¹⁵ Acid catalysed hydrolysis was expected to give the same complications

as in the case of <u>14</u> The ketone <u>13</u> was therefore protected as the ethylene ketal <u>16</u> and the acetates were reduced with lithium aluminium hydride to give, after hydrolysis, the triol <u>17</u>. Treatment of this product with triphenylphosphoranylidene ketene¹³ was expected to give the butenolide <u>18</u> since steric factors would probably favour reaction at the hydroxyl of the side chain. However, only a very small amount of impure material could be obtained after extensive chromatography. This product was further reacted with V⁵⁺ and *t*-butylhydroperoxyde and then acetylated. The ¹H-NMR spectrum of this compound revealed the presence of a small amount of ajugarin I. Improvement of this procedure is currently under investigation.

References and Notes

- * This and subsequent products are pairs of enantiomers All intermediates had Mass, NMR and IR spectra in accord with their expected structures. ¹³C-NMR spectra of compounds <u>7</u>, <u>14</u> and <u>15</u> will be published in Organic Magnetic Resonance, 1982. Compounds <u>12</u>, <u>13</u>, <u>17</u> and <u>18</u> were obtained as oils. All other compounds were crystalline and showed correct elemental analysis
- 1 I Kubo, Y-W.Lee, V Balogh-Nair, K Nakanishi and A Chapya, J Chem. Soc. Chem. Comm, 949 (1976)
- 2 I.Kubo, M.Kido and Y.Fukuyama, J Chem. Soc. Chem. Comm., 897 (1980).
- 3 D.H R.Barton, H.T.Cheung, A.D.Cross, L M Jackman and M Martin-Smith, J. Chem Soc., 5061 (1961)
- 4 D J.Goldsmith, G Srouji and C.Kwong, J. Org. Chem., 43, 3182 (1978).
- 5. S Takahashi, J. Kusumi, H.Kakizawa, Chemistry Lett., 515 (1979).
- 6 A.S.Kende and B Roth, Tetrahedron Lett, 1751 (1982)
- 7 Y.Kojima and N.Kato, Tetrahedron Lett., 5033 (1980).
- 8. S.V Ley, N.S.Simpkins and A J.Whittle, J. Chem. Soc Chem. Comm, 1001 (1981).
- 9. J.M Luteijn and Ae de Groot, J. Org. Chem., 46, 3448 (1981)
- 10 J.M.Luteijn and Ae.de Groot, Tetrahedron Lett., 789 (1981)
- 11 Y.Bessière-Chrétien and C.Grison, Bull. Soc. Chim. France, 2499 (1975)
- 12 H H Inhoffen W.Kreiser and R.Panenka, Justus Liebigs Ann. Chem, 749, 117 (1971).
- 13. K Nickisch, W.Klose and F Bohlmann, Chem. Ber, 113, 2038 (1980)
- 14 K B Sharpless and R C Michaelson, J. Am. Chem. Soc , 95, 6136 (1973)
- 15. J.C.Craig, A.Dinner and P.J Mulligan, J. Org. Chem., <u>37</u>, 3539 (1972)

(Received in UK 7 June 1982)

3424