
Aliphatic Friedel-Crafts Reactions. Part VI.¹ Preparation of $\beta\gamma$ -Unsaturated Ketones by the Acetylation of Substituted Cyclohexenes

By J. K. Groves and N. Jones,* Chemistry and Metallurgy Department, Lanchester College of Technology Priory Street, Coventry

Reaction of 1-alkylcyclohexenes with zinc chloride-acetic anhydride produces 6-acetyl-1-alkylcyclohexenes in good yields, together with small amounts of the isomeric 1-acetyl-2-alkylidenecyclohexanes. Hydrogenation of of the unstaurated ketones readily affords 1-acetyl-2-alkylcyclohexanes.

INTERACTION of cyclohexene and zinc chloride-acetic anhydride has been shown to afford 1-acetylcyclohexene as the major product.^{2,3} In contrast, Deno and Chafetz⁴ found that acetylation of 1-methylcyclohexene under similar conditions provided the $\beta\gamma$ -unsaturated ketone (III; R = H). This paper reports further examples

of the zinc chloride-catalysed acetylation of 1-alkylcyclohexenes (I; R = Me, Et, Pr^n , or Bu^n) to provide the $\beta\gamma$ -unsaturated ketones (III) in 50-70% yield and, unlike the acetylation of 1-methylcyclohexene, smaller amounts of the isomeric ketones (IV). In no instance was the $\alpha\beta$ -unsaturated ketone (V) formed. The products have been quantitatively hydrogenated to the corresponding 1-acetyl-2-alkylcyclohexanes.

Nenitzescu⁵ has reviewed the mechanisms proposed to account for the formation of $\beta\gamma$ -unsaturated ketones in Friedel-Crafts acylation reactions. Such π -bond orientation may alternatively be accounted for by acylium

V. N. Belov, T. A. Rudolfi, and G. Z. Shekhtman, *Doklady Akad. Nauk S.S.S.R.*, 1953, 88, 979.

ion attack from an axial direction followed by ejection of the quasi-axial γ -proton from the short-lived ion (II). Elimination of the quasi-axial proton is favoured by the efficient intermergence ⁶ of the disappearing sp^{3} - and p-orbitals on the γ - and β -carbons respectively when they form a π -bond.

The interaction of the alkyl-cyclohexenes with zinc chloride-acetic anhydride afforded mixtures of two ketones (ca. 4:1) which were isolated either by preparative g.l.c. or by regeneration from purified semicarbazones. The major component obtained from the acetylation of 1-ethylcyclohexene was assigned the structure (III; R = Me) on the basis of n.m.r. bands corresponding to a single olefinic proton, an acetyl group, and a methyl absorption split into a triplet by an adjacent methylene. The n.m.r. spectrum of the minor component differed in that the methyl absorption appeared as a doublet, consistent with structure (IV; R = Me). Confirmation of the above structural assignments was provided by hydrogenation of the mixture of the two ketones to a single compound, 1-acetyl-2ethylcyclohexane. On a similar basis, structures (III) and (IV) are assigned to the ketone products obtained from the other alkyl-cyclohexenes reported in this paper.

4 N. C. Deno and H. Chafetz, J. Amer. Chem. Soc., 1952, 74,

¹ Part V, N. Jones, E. J. Rudd, and H. T. Taylor, J. Chem. Soc., 1963, 2354. ² O. C. Dermer and D. Simpson, Chem. Abs., 1955, **49**, 8098.

<sup>3940.
&</sup>lt;sup>5</sup> C. D. Nenitzescu, 'Friedel-Crafts and Related Reactions,' ed. G. A. Olah, John Wiley, London, 1964, vol. 111, pt. 2, p. 1038.

⁶ D. V. Banthorpe, 'Elimination Reactions,' Elsevier, Amsterdam, 1965.

TABLE

6-Acetyl-1-alkylcyclohexene semicarbazones

			0 12000			initial bazon			
	Found (%)						Calc. (%)		
R H Et Pr ⁿ	$\begin{array}{ccc} H & 148-149^{\circ} * \\ Me & 121-122 \\ Et & 131-131 \cdot 5 \end{array}$		7 12 7 12 7 12	$\begin{array}{c} \varepsilon & C \\ 2,500 & 61\cdot 8 \\ 2,000 & 63\cdot 0 \\ 2,100 & 64\cdot 7 \\ 2,100 & 65\cdot 8 \\ 32^{\circ} \text{, and } 148-1 \end{array}$	H 8.8 9.2 9.2 9.8 50° raised	20.0	Formula $C_{10}H_{17}N_3O$ $C_{11}H_{19}N_3O$ $C_{12}H_{21}N_3O$ $C_{13}H_{23}N_3O$ re with $\alpha\beta$ -ups	$63 \cdot 2 \\ 64 \cdot 6 \\ 65 \cdot 8$	H N 8·7 21·5 9·1 20·1 9·4 9·7
				l-2-alkylcycloł					
	Found (%)							Calc. (%	5)
	R Me Et Pr ⁿ Bu ⁿ	M.p. 174—174·5° 152—153 122·5—123·5 161·5—162	$\begin{array}{c} & \\ & 62 \cdot 6 \\ & 64 \cdot 1 \\ & 65 \cdot 2 \\ & 66 \cdot 3 \end{array}$	H 9·95 10·1 10·5 10·7	N 20·0 18·7 17·7	Formula C ₁₁ H ₂₁ N ₃ C ₁₂ H ₂₃ N ₃ C ₁₃ H ₂₅ N ₃ C ₁₄ H ₂₇ N ₃	$\begin{array}{ccc} O & & 62 \cdot 6 \\ O & & 64 \cdot 0 \\ O & & 65 \cdot 3 \end{array}$	H 9·95 10·2 10·5 10·7	N 19·9 18·7 17·6
			6	-Acetyl-1-alk	ylcyclohez	kenes			
	τ values				Found (%)			Calc. (%)	
R H Me Et Pr ⁿ	C=C-H 4·40m 4·40m 4·40m 4·40m	CH ₃ CO·CH 7·02m 7·00m 7·00m 6·98m	CO•CH ₃ 7·95s 7·95s 7·95s 7·95s	CH ₃ 8·40m 9·02t (J 8 c./sec.) 9·02t (J 7 c./sec.) 9·10t (J 6 c./sec.)	C 77.9 78.9 79.5 79.6	H 9-8 10-9 10-6 11-1	Formula $C_9H_{14}O$ $C_{10}H_{16}O$ $C_{11}H_{18}O$ $C_{12}H_{20}O$	C 78·3 78·9 79·5 80·0	H 10·1 10·5 10·8 11·1
Bu ⁿ	4 ∙ 4 0m	6-98m	7·95s	9.10t (<i>J</i> 6 c./sec.)	80.1	11.0	$\mathrm{C}_{13}\mathrm{H}_{22}\mathrm{O}$	80.4	11.3
				Nf., 14!		1			

m = Multiplet, s = singlet, t = triplet.

EXPERIMENTAL

Spectroscopic Measurements.—N.m.r. spectra were determined for 5—10% solutions in carbon tetrachloride using a 60 Mc. Perkin-Elmer R10 spectrometer. Liquid films were used for i.r. spectra and u.v. absorptions were determined for methanol solutions.

Gas Chromatography.—Analytical g.l.c. of the products was carried out on a Pye Panchromatograph using a 9 ft. 10% silicone gum (SE 30) column at 140° and/or a 9 ft. 10% polyethylene-glycol adipate column at 180°. The purity of the cycloalkenes was confirmed using the former column at 80°. Preparative g.l.c. was carried out on a Wilkens Autoprep A700 with a 20 ft. column containing 10% diethylene glycol-adipate cross-linked with pentaerythritol (L.A.C.) operating at 165°.

Cycloalkenes.—Grignard reactions between cyclohexanone and alkylmagnesium bromides provided 1-alkylcyclohexanols in 45—75% yields. Dehydration of the alcohols with phosphoric acid and subsequent fractional distillation afforded pure 1-alkylcyclohexenes in 65—90% yields.

Reaction of Acetic Anhydride with Cycloalkenes.—Finely divided zinc chloride (0.11 mole) was added to a stirred solution of the cycloalkene (0.10 mole) in acetic anhydride (0.25 mole) during 20 min., the temperature being maintained at 0—3°. The cooled solution was stirred for a further 12 hr., poured into ice-water, and then ether extracted. The organic layer was washed with dilute sodium hydrogen carbonate solution and water, dried (MgSO₄), and the ether was removed. The residue was distilled under reduced pressure.

1-Methylcyclohexene.-The reaction carried out as above

⁷ R. B. Turner and D. M. Voitle, J. Amer. Chem. Soc., 1951, **73**, 1403.

provided 6-acetyl-1-methylcyclohexene (11.0 g.), b.p. 66-69°/8 mm., n_D^{25} 1.4740, v_{max} 1706s (C=O stretching) and 1661w cm.⁻¹ (C=C stretching). A sample (1.00 g.) in ethanol absorbed hydrogen (155 ml. corr. to S.T.P. Calc. for C₉H₁₄O: 1 mole, 162 ml.) in the presence of palladium to provide 1-acetyl-2-methylcyclohexane; semicarbazone m.p. 182-183° (lit.,⁹ 182-182.5°).

1-Ethylcyclohexene.—The reaction provided a liquid (8.5 g.), b.p. 98—102°/20 mm., consisting of two components in ca. 4:1 proportion (g.l.c.). Steam distillation of the semicarbazone of the major acetylation product with twice its weight of phthalic anhydride afforded pure 6-acetyl-1-ethylcyclohexene, $n_{\rm D}^{25}$ 1.4722, $\nu_{\rm max}$. 1705s and 1662w cm.⁻¹ (unspecified assignments here and below are as stated in the preceding paragraph).

The minor component, 1-acetyl-2-ethylidenecyclohexane, was isolated by preparative g.l.c. (Found: C, 79.3; H, 10.6. $C_{10}H_{16}O$ requires C, 79.5; H, 10.8%), n_D^{21} 1.4771, $\nu_{max.}$ 1707s and 1663w cm.⁻¹ N.m.r. bands at τ 4.40 (m, C=CH), 7.00 (AXY type quartet, CH-CO·CH₃, J (H-H_{eq}) 7 c./sec. J (H-H_{ax}) 14 c./sec.), 8.00 (s, CO·CH₃), and 8.90 (d, C=CH·CH₃, J 8 c./sec.).

Hydrogenation of the mixed product as above afforded a single compound (g.l.c.).

1-acetyl-2-ethylcyclohexane, $n_{\rm D}^{25}$ 1·4561 (Found: C, 77·9; H, 11·7. C₁₀H₁₈O requires C, 77·9; H, 11·7%), $v_{\rm max}$ 1706 cm.⁻¹. N.m.r. bands at τ 7·15 (m, CH–CO·CH₃), 7·98 (s, CO·CH₃), and 9·08 (t, CH₂CH₃, J 7 c./sec.).

1-n-Propylcyclohexene.—Reaction afforded a liquid (10.0 g.), b.p. 102—106°/11 mm., containing two components in ⁸ E. A. Braude, E. R. H. Jones, H. P. Koch, R. W. Richardson, F. Sondheimer, and J. B. Toogood, *J. Chem. Soc.*, 1949, 1890.

⁹ R. B. Turner, J. Amer. Chem. Soc., 1950, 72, 879.

ca. 4:1 proportion (g.l.c.). The major product, 6-acetyl-1-n-propylcyclohexene, $n_{\rm D}^{20}$ 1.4708, $\nu_{\rm max}$ 1705s and 1660w cm.⁻¹, was regenerated from its semicarbazone as described above. The minor component, 1-acetyl-2-propylidenecyclohexane, was isolated by preparative g.l.c. (Found: C, 79.2; H, 10.6. C₁₁H₁₈O requires C, 79.5; H, 10.8%), $n_{\rm D}^{25}$ 1.4702, $\nu_{\rm max}$ 1706s and 1665w cm.⁻¹. Hydrogenation of the mixed product as above afforded a single compound (g.l.c.), 1-acetyl-2-n-propylcyclohexane, $n_{\rm D}^{21}$ 1.4569, $\nu_{\rm max}$ 1706 cm.⁻¹.

1-n-Butylcyclohexene.—Reaction afforded a liquid (12.0 g.), b.p. 95—100°/6 mm. containing two components in ca. 4:1 proportion (g.l.c.). The major product, 6-acetyl-1-n-butylcyclohexene, was isolated by preparative g.l.c., n_D^{25} 1.4700, v_{max} 1705s and 1661w cm.⁻¹. Hydrogenation of the

mixed product afforded a single compound, 1-acetyl-2-n-butylcyclohexane, $n_{\rm p}^{20}$ 1·4591, $v_{\rm max}$ 1705s cm.⁻¹.

1-n-Pentylcyclohexene.—Reaction afforded a liquid (15.9 g.), b.p. 128—130°/8 mm. containing two components in ca. 4:1 proportion (g.l.c.). The major component, 6-acetyl-1-n-pentylcyclohexene, was isolated by preparative g.l.c., n_D^{22} 1.4681, ν_{max} 1705s and 1660 cm.⁻¹. Hydrogenation of the mixed product afforded 1-acetyl-2-n-pentylcyclohexane, n_D^{21} 1.4600, ν_{max} 1706s cm.⁻¹.

We are indebted to the S.R.C. for a grant to purchase equipment and to the University of Warwick for the use of a Wilkens A700 chromatograph and for the determination of n.m.r. spectra.

[8/344 Received, March 8th, 1968]