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Abstract: New homochiral 1-norbomylthiotriflates 6 and 7 and l-norbornanethiols 8 and 
9 are easily prepared starting from naturally occurring 2-norbomanones 1. The key step 
is the reaction of chiral 2-norbornanethiones 2 with Tf20 under mild conditions. © 1997 
Published by Elsevier Science Ltd 

Thiosulfonates R-SO2S-R' are less common than their oxygen analogues, sulfonates, although 
they constitute an important class of organic compounds which have found interesting applications 
as antifungical, 1 bactericidal, l radioprotectant I and sulfhydryl blocking reagents for enzymes. 2 
Furthermore, they are useful synthons for the preparation of certain I~-lactam antibiotics 3 such as 3- 
norcephems, penams, penems and other biologically active compounds such as enzyme inhibitors. 4 
Thiosulfonates react with nucleophiles at the sulfenyl sulfur, due to the good nucleofugacity of 
sulfinate anions, 5 giving S-S bond cleavage products. This makes them powerful sulfenylating agents, 6 
especially in the thioalkylation of thiols 7 to form unsymmetrical disulfides which play significant roles 
in diverse biochemical processes as regulatory hormones, drugs and enzyme activators or inhibitors, s 

The most common synthetic methods for the preparation of thiosulfonates involve alkylation of 
thiosulfonic acids salts, 4,6b,9 sulfenylation of sulfinic acids or their salts, I° reaction of thiols with 
sulfonyl halides II and oxidation of thiosulfinates, thiols or disulfides 3¢'12 (only suitable for the 
symmetrical ones). However, all these procedures have limitations (mainly in the preparation of 
unsymmetrical thiosulfonates), I°c,12 derived from side reactions or unstability and unavailability of 
starting materials. Very recently, a procedure for the preparation of alkyl- and aryl- thiotriflates by 
sulfenylation of sodium triflinate has been described.13 Thiolriflates could be more potent sulfenylating 
agents than nonfluorinated thiosulfonates. 

In this communication we present an easy and convenient procedure for the preparation of 
different substituted 1-norbornylthiotriflates 5-7 and 1-norbornanethiols 8 and 9 from 1-methyl-2- 
norbornanones 1. Both thiotriflates and thiols are promising as precursors for the preparation of other 
optically active bridgehead sulfur compounds (e.g. sulfonic acids, sulfides, disulfides, etc.). 

As we have earlier shown, the reaction of 1-methyl-2-norbornanones 1 such as fenchone la  and 
camphor lb  with trifluoromethanesulfonic anhydride in the presence of a hindered base takes place 
under Wagner-Meerwein rearrangement of the triflyloxycarbenium ions formed by eleetrophilic attack 
at the carbonyl oxygen, giving 2-methylidene-1-norbornyltfiflates in good yields.24 These homochiral 
bridgehead triflates have been widely used by us as starting materials for the preparation of other 
homochiral bridgehead compounds of great interest such as 1-norbornylamines with antiviral activity, 15 
1,2-norbornanediols, 14b,16 I~-aminoalcohols, 17 bicyclo [2.1.1] hexane derivatives Is and homochiral 
cyclopentane derivatives.14b 
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Following our work plan on the preparation and chemistry of bridgehead homochiral compounds 
starting from naturally occurring 1-methyl-2-norbornanones 1,14,19 we report here on the synthesis 
of new homochiral thiotriflates like 6a, 6b and 7 and thiols 8a, 8b and 9 based on the reaction 
of thioketones 2 with trifluoromethanesulfonic anhydride (Tf20). The results are summarized in 
Scheme 1. 
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Scheme I. 

Thioketones 220 were obtained by reaction of ketones 1 with Lawesson's reagent. 21 As expected, 
the reaction of 2 with Tf20 proceeds as with the parent ketones, 14 leading to the trifluoromethylsul- 
fonylthiocarbenium ion 3 which undergoes a Wagner-Meerwein rearrangement to 4 and subsequent 
deprotonation giving the thiotriflates 5 and 6 in good yields. 22 The thus obtained thiotriflate 6b is 
pure enough (>95% by IH-NMR) to be employed in further reactions. Nevertheless, analytical pure 
samples of 61) can be obtained by flash column chromatography (silica gel/n-pentane). Thiotriflate 
6b quantitatively isomerizes to 7 when treated with two equivalents of TfOH in CH2CI2 at -78°C 
through a Nametkin rearrangement, similar to its analogous triflate. 14a,23 In the case of 2a, thiotriflates 
5 and 6 were easily separated by column chromatography (silica gel/n-pentane). 

The reduction of thiotriflates 6 and 7 was straightforwardly achieved by reaction with LiAIH4 in 
Et20 at 34°C, affording the bridgehead thiols 8 and 9, through S-S bond cleavage. Thiols 8 and 9 
were purified by column chromatography (silica gel/n-pentane). 

In summary, we have presented a facile and convenient method for the preparation of new homochiral 
bridgehead thiotriflates and thiols, 24 which are promising as precursors of chiral ligands 25 and other 
interesting bridgehead sulfur derivatives. Further work in this area is in progress. 
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