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The computing times of high-breakdown point estimates of multivariate location and scatter increase
rapidly with the number of variables, which makes them impractical for high-dimensional datasets,
such as those used in data mining. We propose an estimator of location and scatter based on a modi� ed
version of the Gnanadesikan–Kettenring robust covariance estimate. We compare its behavior with
that of the Stahel–Donoho (SD) and Rousseeuw and Van Driessen’s fast MCD (FMCD) estimates. In
simulations with contaminated multivariate normal data, our estimate is almost as good as SD and
clearly better than FMCD. It is much faster than both, especially for large dimension. We give examples
with real data with dimensions between 5 and 93, in which the proposed estimate is as good as or better
than SD and FMCD at detecting outliers and other structures, with much shorter computing times.

KEY WORDS: Data mining; Minimum covariance determinant; Robust covariances; Stahel–Donoho
estimate.

1. INTRODUCTION

It is well known that the sample mean and covariance
matrix, which are basic elements of many multivariate
procedures, are sensitive to outlying observations. There are
several approaches to deal with this problem. M estimates
(Maronna 1976) are relatively simple to compute, but their
breakdown point (i.e., the maximum proportion of outliers
that the estimate can safely tolerate) is at most 1=p, where p

is the dimension of the data. Different approaches have been
proposed to overcome this dif� culty. Some of them are based
on the minimization of a robust scale of Mahalanobis dis-
tances: the minimum volume ellipsoid (MVE) and minimum
covariance determinant (MCD) estimates (Rousseeuw 1984,
1985), S estimates (Davies 1987), and ’ estimates (Lopuhaä
1991). Others are based on projections: the Stahel–Donoho
estimate (SDE) proposed by Stahel (1982) and Donoho
(1981) and studied by Maronna and Yohai (1995); P estimates
(Maronna, Stahel, and Yohai 1992); and a recent proposal by
Peña and Prieto (2001).

All of these estimates have a high breakdown point for all
p3 in fact, if conveniently tuned, they may attain the maxi-
mum breakdown point for af� ne-equivariant estimates (Davies
1987). However, their computation requires a heavy effort.
Exact computation of the MCD may be performed through
heuristic procedures (Agulló 1996), but nevertheless remains
feasible only for small datasets. Feasible sets (Hawkins 1994)
ensure attaining the solution with probability 1, but are very
time-consuming for large p.

Approximate computing is usually based on taking a num-
ber Ns of subsamples—generally of size p C 1—to obtain
an initial set of solutions, which are the starting point for
the search for a (hopefully global) extremum. Ruppert (1992)
developed a heuristic procedure for S estimates.

To ensure a given breakdown point, the value of Ns must
increase exponentially with p. A suf� ciently high value of Ns

is also necessary to ensure stability of the result. In general, all
of these methods are feasible for moderate p, but computing
them for large p in a reasonable time requires using values
of Ns that imply giving up a high breakdown point. Woodruff
and Rocke (1993, 1994) proposed procedures to deal with
this problem. Recently, Rousseeuw and van Driesen (1999)
proposed the “fast MCD” (FMCD), a procedure much more
effective than naive subsampling for minimizing the objective
function of the MCD, which seems capable of yielding “good”
solutions without requiring huge values of Ns . But FMCD
still requires substantial running times for large p. Recently,
Peña and Prieto (2001) proposed a fast algorithm based on the
kurtosis of projections, which does not require subsampling.

Much faster estimates can be computed if one drops the
requirements of positive de� niteness and af� ne equivariance.
Early proposals of robust procedures are of this type (see
Bickel 1964, Sen and Puri 1971). A straightforward approach
for multivariate location is to simply calculate a robust loca-
tion estimate to each individual variable. In the case of mul-
tivariate scatter, one can similarly apply a robust covariance
or correlation estimate to each pair of variables. Estimates of
this type are called “coordinatewise” and “pairwise.”

There are many proposals for robust univariate location esti-
mates (see, e.g., Hampel, Ronchetti, Rousseeuw, and Stahel
1986), and also several proposals for the robust estimation of
covariance or correlation of a pair of variables. The simplest
methods are based on (a) ranks, such as the Spearman’s � and
Kendall’s ’ (Abdullah 1990); (b) winsorization of the data,
such as the quadrant correlation and the “Huberized” covari-
ance estimates (Huber 1981, p. 204); and (c) robusti� cation of
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308 RICARDO A. MARONNA AND RUBEN H. ZAMAR

the relationship between variances and covariances, initially
proposed by Gnanadesikan and Kettenring (1972) and studied
by Devlin, Gnanadesikan, and Kettenring (1981).

Unfortunately, the resulting multivariate location and scat-
ter matrix estimates are not af� ne equivariant, and the scatter
matrix is not guaranteed to be positive de� nite. Rousseeuw
and Molenberghs (1993) proposed several methods to deal
with the problem of negative eigenvalues. Note that although
the scatter matrices obtained by approaches (a) and (b) are
positive de� nite, they require a correction to make them con-
sistent for normal data, and the correction destroys their pos-
itive de� niteness.

In this article we present a general method to obtain
positive-de� nite and approximately af� ne-equivariant robust
scatter matrices starting from any pairwise robust scatter
matrix. We apply our method to estimates obtained by the
aforementioned method (c) to de� ne multivariate location
and scatter estimates that are shown to be as good as the
equivariant ones reviewed before, while requiring much
less computing effort. Although our estimates are not af� ne
equivariant, they are shown to perform well even under very
high collinearity. We give some numerical evidence indicating
that the lack of equivariance is not a serious concern in our
estimates.

We de� ne the estimate in Section 2. In Section 3 we show
the results of a simulation study comparing it to the SDE and
FMCD under contaminated normal distributions. In Section 4
we treat some high-dimensional real datasets. In Section 5
we deal with the lack of equivariance of the estimates. In
Section 6 we compare the computing times of the different
estimates, and � nally, in Section 7 we discuss the results.

2. THE ESTIMATE

The estimate de� ned by Gnanadesikan and Kettenring
(1972) is based on the identity

cov4X1Y 5 D 1

4
‘ 4X C Y 52 ƒ‘ 4X ƒ Y 52

¢
1 (1)

where ‘ is the standard deviation and X1 Y is a pair of random
variables. These authors proposed to de� ne a “robust covari-
ance matrix” by using a robust scale as ‘ ; they used a trimmed
standard deviation. The resulting matrix is symmetric, but not
necessarily positive semide� nite, and is not af� ne-equivariant
either. Genton and Ma (1999) calculated its in� uence function
and asymptotic ef� ciency.

Recall that if V is the covariance matrix of the p-dimensional
random vector x and ‘ denotes the standard deviation, then

‘ 4a0x52 D a0Va (2)

for all a 2 Rp . The Gnanadesikan–Kettenring estimate forces
(2) for a robust scale ‘ and a small set of directions a. The
P estimates of Maronna et al. (1992) attempt to ful� ll (2)
approximately for all directions.

To overcome the lack of positive semide� niteness, we pro-
pose a modi� cation that forces (2) for a set of “principal direc-
tions” and is based on the observation that the eigenvalues of
the covariance matrix are the variances along the directions
given by the respective eigenvectors. Let x11 : : : 1 xn

2 Rp be a
dataset. As a general notation, call X D 6xij 7 the n� p matrix

with rows x0
i 4i D 11 : : : 1 n5 and columns Xj 4j D 11 : : : 1 p5.

Let ‘ 4¢5 and Œ4¢5 be robust univariate dispersion and location
statistics, and let “4¢1 ¢5 be a robust estimate of the covariance
of two random variables. We de� ne a scatter matrix V4X5 and
a location vector t4X5 as follows:

1. Let D D diag4‘ 4X151 : : : 1‘ 4Xp55 and yi
D Dƒ1xi ,

i D 11 : : : 1 n.
2. Compute the “correlation matrix” U D 6Ujk7, applying “

to the columns of Y, that is

Ujj
D 11 and Ujk

D “4Yj 1 Yk51 j 6D k0

3. Compute the eigenvalues ‹j and eigenvectors ej of
U 4j ² 11 : : : 1 p5, and call E the matrix whose columns are
the ej’s, so that U ² EåE0, where å D diag4‹11 : : : 1 ‹p5.

4. Let

A D DE1 and zi
D E0yi

D Aƒ1xi1 (3)

so that xi
D Azi , and de� ne

V4X5 D AâA0 and t4X5 D A�1 (4)

where â D diag4‘ 4Z15
21 : : : 1‘ 4Zp525 and � D 4Œ4Z151 : : : ,

Œ4Zp550.

The � rst step makes the estimate scale-equivariant. The
other steps are a kind of “principal components,” replacing the
‹’s—which may be negative—by the “robust variances” of the
corresponding directions. Another way to view the estimate is
to consider that if U approximates the covariance matrix of
Y, then Z11 : : : 1Zp should be approximately uncorrelated and
hence should have a diagonal covariance matrix (i.e., â ). Like-
wise, it is better to apply a coordinatewise location estimate
to the (approximately uncorrelated) Zj’s, and then transform
back to the X coordinates, than to apply it directly to the Xj’s.

We take as “ the Gnanadesikan–Kettenring estimator
de� ned in (1), which in step 2 yields

Ujk
D 1

4

£
‘ 4Yj

C Yk5
2 ƒ‘ 4Yj

ƒ Yk5
2
¤
1 j 6D k0

The resulting estimate is called an orthogonalized Gnana-
desikan–Kettenring (OGK) estimate.

The procedure can be iterated, computing V and t for Z
obtained in step 4, and then expressing them in the original
coordinate system, that is

V4254X5 D AV4Z5A01 and t4254X5 D At4Z51 (5)

with Z and A de� ned in (3). Further iterations are de� ned
likewise.

The de� nition can be extended to include zero scales. If
‘ 4Xj5 D 0, then de� ne Yj

D 0 in step 1.
The estimate can be improved on by a reweighting step.

Denote in general the Mahalanobis distances by

di
D d4xi5 D 4xi

ƒ t50Vƒ14xi
ƒ t51 (6)

with t D t4X5 and V D V4X5. Let W be a weight function,
and de� ne tw and Vw as the weighted mean and covariance
matrix, where each xi has weight wi

D W4di5, that is,

tw
D

P
i wixiP

i wi

and Vw
D

P
i wi4xi

ƒ tw54xi
ƒ tw50

P
i wi

0 (7)
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ROBUST MULTIVARIATE ESTIMATES 309

The simplest W is “hard rejection,” with W 4d5 D I4d µ d05,
where I4¢5 is the indicator function. We take

d0
D

�2
p4‚5 med4d11 : : : 1 dn5

�2
p4055

1 (8)

where �2
p4‚5 is the ‚-quantile of the chi-squared distribution

with p degrees of freedom, and “med” denotes the median.
Note that to compute (6) from (4), no matrix inversion is

required, because

di
D

X
j

³
zij

ƒ Œ4Zj5

‘ 4Zj5

2́

0

As a general notation, OGK4l5 henceforth denotes the OGK
estimate with l iterations, so that OGK415 corresponds to the
initial estimate (4); OGK4l54‚5 denotes the reweighted version
(7)–(8), and OGK remains the generic name of the family of
estimates.

2.1 Properties

It follows from the de� nition that t is shift-equivariant. It
is easy to prove that if ‘ and Œ are consistent, then t and V
in (4) are consistent for the location and shape of elliptical
distributions. This is described more precisely in the following
proposition.

Proposition 1. Let x11 : : : 1xn1 : : : be iid with xi
D Bui

C
t0 where ui has a spherical distribution. Put for a 2 Rp2 Xan

D
8a0x11 : : : 1a0xn9. Assume that for all a, the limits in proba-
bility of Œ4Xan5 and of ‘ 4Xan5 exist. Then when n ! ˆ1 t
converges in probability to t0 and V to cBB0, where c is a
scalar.

It is also easy to show that if the breakdown points of Œ and
‘ (for both implosion and explosion) are not less than ˜, then
so is the breakdown point of 4t1 V5 if the data are not collinear.
More precisely, let X D 8x11 : : : 1 xn9 be a univariate sample.
For m 2 801 : : : 1 n9 de� ne the “contamination neighborhood”
of X as the set of samples of size n having nƒm elements in
common with X , that is,

¸m
D 8eX 2 #4eX5 D n1 #4eX \ X5 D n ƒ m91 (9)

where #4¢5 denotes the cardinality. Then the contamination
breakdown point of Œ at X is

˜ ü 4Œ1X5 D 1
n

max m 2 sup
eX2¸m

—Œ4eX5— < ˆ 1

and the explosion and implosion breakdown points of ‘ are

˜ ü
C4‘ 1 X5 D 1

n
max m 2 sup

eX2¸m

‘ 4eX5 < ˆ

and

˜ ü
ƒ4‘ 1 X5 D 1

n
max m 2 inf

eX2¸m

‘ 4eX5 > 0 0

Now let X be a sample of size n in Rp . The breakdown
points of t and V at X are

˜ ü 4t1X5 D 1
n

max m 2 sup
eX2¸m

˜t4eX5˜ < ˆ

and

˜ ü 4V1X5 D 1
n

max m 2 0 < inf
eX2¸m

‹14V4eX55

< sup
eX2¸m

‹p4V4eX55 < ˆ 1

where ‹14V5 and ‹p4V5 are the smallest and largest eigenval-
ues of V and ¸m is de� ned as in (9) but with X instead of X.
Then for t and V in (4), we have the following.

Proposition 2. Assume that

ƒ D 1
n

sup8#8i 2 a0xi
D c9 2 a 6D 01 c 2 R9 < 10

Let Œ and ‘ satisfy ˜ ü 4Œ1X5 ¶ ˜ and ˜ ü
C4‘ 1 X5 ¶ ˜ for all

(univariate) X, and ˜ ü
ƒ4‘ 1 X5 ¶ ˜ for all X such that #8i 2 Xi

D
c9 µ nƒ for all c 2 R. Then ˜ ü 4t1X5 ¶ ˜ and ˜ ü 4V1X5 ¶ ˜.

The proofs of Propositions 1 and 2 are straightforward and
are not given here. Ma and Genton (2001, sec. 4.1) dealt only
with the breakdown points of individual covariances computed
through (1).

It should be noted that having a high breakdown point
is not always an important merit for a nonequivariant esti-
mate. For example, the “robust covariance matrix” de� ned
as diag4MAD4X15

21 : : : 1MAD4Xp525, where MAD stands for
mean absolute deviation, has breakdown .5!

The maximum bias under pointwise contamination has been
computed for the MVE and the SDE (Yohai and Maronna
1990; Maronna and Yohai 1995). The lack of equivariance of
the OGK makes the study of its bias extremely dif� cult.

3. SIMULATION

We have run a simulation comparing the SDE, FMCD, and
OGK estimates. To evaluate their statistical behavior, we need
situations in which the “true values” are known; we have
chosen the contaminated multivariate normal model. Because
exploring a full neighborhood is infeasible, we focus on point
mass contamination; that is, for a sample 8x11 : : : 1 xn9, the � rst
nƒ m elements are iid multivariate normal, and the remaining
m are equal to a � xed vector.

We used the SDE with “Huber weight function” following
Maronna and Yohai (1995, p. 334), with threshold

b D
q

�2
p4‚5 with ‚ D 0500 (10)

The FMCD was computed through the algorithm of Rousseeuw
and van Driesen (1999), followed by a step of hard rejection
with ‚ D 0975.

We used the estimates OGK4l5 with l D 112 and their
reweighted versions OGK4l54‚5 with ‚ D 0901 095, and .975.
Because ‚ D 09 generally yielded the best results, only this
case is shown, but ‚ D 095 was almost as good. Exploratory
simulations showed that iterations beyond the second did not
lead to improvement. Numerical experiments do not show
any convergence when iterating a large number of times.

Because we need robust and ef� cient scale and location
estimates, we chose for ‘ the “’ scale” of Yohai and
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310 RICARDO A. MARONNA AND RUBEN H. ZAMAR

Zamar (1988), which is a truncated standard deviation, and a
weighted mean for Œ. De� ne the functions

Wc4x5 D
³

1ƒ
³

x

c

2́ 2́

I4—x— µ c5 and �c4x5 D min4x21 c250

Let X D 8x11 : : : 1 xn9 be a univariate sample and put

‘ 0
D MAD4X5 D med4—X ƒ med4X5—5 and

wi
D Wc1

³
xi

ƒ med4X5

‘0

´
0

Then the location and scale statistics are de� ned as

Œ4X5 D
P

i xiwiP
i wi

and

‘ 4X52 D ‘ 2
0

n

X

i

�c2

³
xi

ƒ Œ4X5

‘0

´
0 (11)

To combine robustness and ef� ciency, we took c1 D 405 and
c2 D 3, which yield approximately 80% ef� cient univariate
location and scale for both normal and Cauchy data. Simply
using the median and the MAD clearly worsened the simu-
lation results, especially for collinear data. Ma and Genton
(2001) advocated using the scale estimate Qn proposed by
Croux and Rousseeuw (1992) and Rousseeuw and Croux
(1993), but we prefer (11) for reasons of speed. In the
pure normal situation, the results for the sample mean and
covariance are also shown.

Unfortunately, the procedure proposed by Peña and Prieto
(2001) was not available to us when the simulation study
was conducted. A comparison with this method would be of
interest.

The sampling situations were p-variate normal ˜-contami-
nated distributions, with p taking the values 5 and 10, and n D
10p. In view of the lack of equivariance of the OGK estimate,
its behavior may depend on the covariance structure; hence
we generated correlated data as follows. Let m D 6n˜7 (where
6¢7 denotes the integer part); generate yi as p-variate normals
Np401 I5 for i D 11 : : : 1 n ƒ m, and as Np4y01 „2I5 for some
y0 and i > n ƒ m; we chose „ D 01. The choice of a normal
distribution with a small dispersion, rather than exact point-
mass contamination, is due to the fact that exactly repeated
points may cause problems with the subsampling algorithms
used to compute the SDE and FMCD.

Put xi
D Ryi , where R is the matrix with

Rjj
D 11 and Rjk

D � for i 6D j0 (12)

Then for ˜ D 01 X has covariance matrix R2, and the multiple
correlation �mult between any coordinate of X and all of the
others is easily calculated as a function of �. We chose � so
that �mult took on chosen values. If �mult is high, then X is
concentrated around the line with direction a1

D 411 11 : : : 1150,
the eigenvector of R corresponding to its largest eigenvalue.
We took y0 D ka0, where a0 is a unit vector. Preliminary sim-
ulations suggested that the least favorable direction for OGK
is orthogonal to a1. Given b, take a0

D b ƒ b0a1=p and then
normalize it to unit norm. We tried two options, one using a
� xed b with bj

D 4ƒ15j and the other taking b at random with
a spherical distribution. They yielded similar results, and we
report those corresponding to the � rst option. The value of k
ranged over a set of values to search for the least favorable

ones for location and scatter, which appear in the table as kt

and kV .
Exploratory simulations were run with different values of

�mult 2 01 051 071 09, and .999. For �mult
D 0 and .5, OGK behaved

surprisingly well (similarly to SDE); but as could be expected,
its behavior deteriorated with increasing �mult . The reweighted
versions were more stable. We show only the results corre-
sponding to the least favorable case, �mult D 0999. This is a
very collinear situation, the ratio of variances of projections
orthogonal to a0 to those along a0 is .0003 and .0002 for
p D 5 and 10. This collinearity is much higher than that in
the simulations of Devlin et al. (1981) and Ma and Genton
(2001). Of course, the value of �mult does not affect the other
estimates, because they are equivariant.

For each estimate, the location vector t and scatter matrix
V were computed, and then “back-transformed,” t1

D Rƒ1t,
V1

D Rƒ1VRƒ1, with R de� ned in (12). They were evalu-
ated through the distributions of the “errors” et

D ˜t1
˜2 and

eV
D log4cond4V155 (the decimal logarithm). Their mean and

�-quantiles were computed, with � D 051 075, and .90. Only the
values corresponding to � D 075 are shown; the others yield
qualitatively similar results. The condition numbers are more
easily displayed in the log scale, because they range between
about 3 and 20,000.

The number of subsamples corresponding to p D 5 and 10
was 1,000 and 2,000 for SDE and 500 and 1,000 for FMCD.
This is probably much larger than needed, but we wanted to
see the behavior of these estimates at their best. The number
of Monte Carlo replications was 1,000 in all cases. For each
combination of n and p, the samples were the same for all
estimates and all ˜ and k. The results are displayed in Table 1.

Discussion. The SDE appears to be the overall best esti-
mate for point contamination, and FMCD appears to be the
worst. Among the four variants of OGK, OGK4154095 seems
the best. OGK24095 is better than OGK425 for scatter, but worse
for location. The failure of FMCD at ˜ D 021 p D 10 is surpris-
ing, as is the high k D 70 at which it occurs; at k D 75, the
values for scale and location drop to .89 and .25.

Reweighting slightly improves on the ef� ciency of OGK
when ˜ D 0. The ef� ciency of the reweighted OGK is similar
or greater than that of the SDE, and both the reweighted OGK
and the SDE are much more ef� cient than FMCD.

We must remember, however, that normal data with point
mass contamination is but one simpli� ed version of the many
possibilities reality has to offer. In the next section we explain
that with real data, the comparisons may yield results different
than those of the simulations.

4. REAL DATA

We analyzed several datasets with p between 5 and 93. Here
we show the results for the most interesting ones. For each
dataset, we computed the same estimates as in the simulation.
Because the reweighted versions of OGK always showed more
structure than the raw ones, only the results for OGK415(.9) and
OGK425(.9) are displayed, and the “(.9)” is omitted for brevity
in this section. The number Ns of subsamples is the default
500 for FMCD and depends on p for SDE. The threshold b of
SDE is taken as in (10) for p µ 10; because for larger p this
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ROBUST MULTIVARIATE ESTIMATES 311

Table 1. Simulation Results

p D 51n D 50 p D 101n D 100

˜ Estimate eV et kV k t eV et kV k t

0 SD(.5) 055 016 054 014
FMCD 1003 025 090 020
OGK 059 018 056 017

OGK(.9) 057 017 057 015
OGK(2) 054 017 054 017

OGK(2)(.9) 059 016 056 015
Mean-covariance 048 013 053 013

.1 SD 073 031 505 205 090 036 50 5
FMCD 1056 067 4 4 2010 2056 10 10
OGK 2049 054 200 200 2052 061 200 200

OGK(.9) 081 032 4 4 095 048 5 5
OGK(2) 1048 036 200 4 1068 042 200 7

OGK(2) (.9) 087 038 4 4 1009 059 6 6

.2 SD 1027 1051 17 3 1056 2078 35 5
FMCD 301 2202 12 15 4032 51505 70 70
OGK 3035 6022 200 200 3046 35037 200 200

OGK(.9) 1058 3063 9 9 1070 4066 10 10
OGK(2) 2050 5018 200 15 2067 3087 200 9

OGK(2)(09) 1099 9093 15 15 2024 17042 20 20

NOTE: et and eV are the error measures for t and V , equal to the .75 quantiles of ˜t˜2 and of log10 cond (V). k t and kV are the respective
contamination locations yielding the highest errors for each estimate.

may yield excessively large values, and hence a less robust
estimate, we used

b D min
±q

�2
p402551 4

²
0

For each estimate 4V1 t5, call di the Mahalanobis distances
as in (6), put

Di
D �2

p4055
di

med4d¢5
1

call D4i5 the ordered Di´s; and let fi
D �2

p4i=4nC155. Then for
normal data, we should have D4i5 fi. For each dataset, we
plotted Di versus case i and D4i5 versus fi.

Figure 1. Bush’ re Data: Distance Di Versus Index i for (a) FMCD
and (b) SDE.

4.1 Bush’ re Data (Campbell 1989)

This dataset containing satellite measurements on � ve fre-
quency bands, corresponding to each of n D 38 pixels, was
analyzed by Maronna and Yohai (1995). Here Ns

D 500 for
SDE. Figures 1–2 display Di versus i. All estimates show the
same structure, but with different degrees of emphasis. Pixels
32–38 appear as clear outliers, and also 31 to a lesser extent.
But OGK415 gives only faint indications of 7–9, whereas the
other estimates clearly point out 7–11 and give some indica-
tions for 29 and 30. N. A. Campbell (personal communica-
tion) pointed out that the pixels may be classi� ed as “burnt,”
“unburnt,” and “water” and that the suspect ones lie on bound-
ary areas between the classes.

Figure 2. Bush’ re Data: Distance D i Versus Index i for (a) OGK and
(b) OGK(2) .
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312 RICARDO A. MARONNA AND RUBEN H. ZAMAR

Figure 3. Engineering Data: Distance Di Versus Index i for (a) FMCD
and (b) SDE.

4.2 Engineering Data

Rousseuw and van Driesen kindly supplied the data used
in their article: nine characteristics measured on n D 677
diaphragm parts for TV sets. Here Ns

D 21000 for SDE.
Figures 3–4 show Di versus i. It is seen that all estimates
identify essentially the same structure: some isolated outliers,
plus points 491–565, but FMCD and OGK425 do so more
strongly than SDE and OGK415. The plot for mean-covariance
(not shown here) identi� es only the isolated outliers.

4.3 Ionospheric Data

This dataset from the Johns Hopkins University Ionosphere
database was taken from the “Data Repository” of Bay
(1999) and has been used by Sigillito, Wing, Hutton, and
Baker (1989). It consists of 351 radar measurements on 34
continuous characteristics, which are the real and imaginary

Figure 4. Engineering Data: Distance Di Versus Index i for (a) OGK
and (b) OGK(2).

Figure 5. Q-Q Plots of Ionospheric Data for OGK (C) and
OGK(2) (� ).

parts of the complex responses corresponding to each of 17
pulse numbers. The measurements are classi� ed as “good”
radar returns (those showing evidence of some type of
structure in the ionosphere) or “bad” ones. We analyze the
n D 225 “good” ones. Variables 1, 2, and 27 were omitted
from the analysis because they had MAD D 0, so that here
p D 31. These are very collinear data; the condition numbers
of the covariance matrix and of OGK4154095 are about 4,000
and 14,000. We took Ns

D 21000 for the SDE. Ploting Di

versus i shows no structure. To plot D4i5 versus fi we found
the problem of the large range of the former, which prevents
us from seeing details in the lower values; hence we plotted
the square roots of D4i5 and fi . In each plot the curves
were slightly displaced to avoid superimposing them. Figures
5–6 show that the data structure is more complex than just
“normal data with outliers.” The plots for both FMCD and
OGK425 show an almost straight part for

p
fi < about 5.7 (the

smallest 128 distances), which may describe a “central part”

Figure 6. Q-Q Plot of Ionospheric Data for FMCD (C), SDE (� ), and
cov (�).
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ROBUST MULTIVARIATE ESTIMATES 313

Table 2. Ionospheric Data: Points With the Largest Mahalanobis Distances

Estimate Points with largest D i (inverse order)

FMCD (Ns D 500) 96 95 18 62 26 14 33 27 202 56 116 41 29 119 129
SDE (Ns D 21000) 95 96 27 18 62 116 14 26 56 85 41
OGK(.9) 85 95 84 96 81 83 202 109 214 14 18 203 94 62 130
OGK(2)(.9) 95 96 62 14 18 85 202 27 26 41 64 215 81
Mean-covariance 95 96 62 27 18 116 40 14 26 85 108

of the data, followed by an abrupt increase. The points with
largest distances are given in Table 2.

For a more detailed analysis of the data, we plotted for each
observation the sequence of coordinates, but � rst placing the
odd and then the even numbered ones (the real and imaginary
parts of the signal). The following features emerged:

a. 138 of the 225 observations have 1 of 4 characteristic
forms. Figure 7 plots observations 4, 32, 58, and 79, which
are “pure specimens”; most specimens are noisier. Forms (d)
and (a) are the most and the least abundant, with 70 and
10 points. Lacking subject matter knowledge, we ignore the
physical meaning of the forms.

b. 22 observations look like a mixture of form (b) with (c)
or (d).

c. 39 observations look like very noisy versions of type a
or b.

d. 26 do not seem to belong to any of the former; these are
subjective classi� cations.

The points with the largest Mahalanobis distances belong
to type c or d. Figure 8 shows observations 95, 96, 41, and
27, which are among the � rst listed in Table 2.

The rank orders of the Mahalanobis distances for all esti-
mates (except mean-covariance) follow same pattern:

ÿ Most points of types c and d are well above rank 128,
where the break for FMCD and OGK425 occurs.

Figure 7. Ionospheric Data: “Pure Specimens.” (a) Observation 4;
(b) observation 32; (c) observation 58; (d) observation 79.

ÿ Most points of form (a) in Figure 7 are just above the
break.

ÿ Most points of forms (b), (c), and (d) in Figure 7 and
type c are below rank 128.

We can thus conclude that the break in the plots for FMCD
and OGK425 correspond to a real feature of the data and not
to an artifact. The other estimates give no hint of this feature.

We remark that this analysis has been made only to demon-
strate the behavior of the estimates, and that further analysis
and subject matter knowledge are needed to really understand
this dataset.

4.4 Spectral Data

This dataset was also taken from Bay (1999). It is part of
the Low-Resolution Spectrometer Database in the Infra-Red
Astronomy Satellite Project and contains n D 531 high-quality
spectra measured on p D 93 frequency bands. We used Ns

D
31000 for SDE. The results are displayed in Figures 9 and 10.

The mean and covariances point out only points 210 and
maybe 307. Increasing Ns to 10,000 does not change the SDE
results very much. FMCD with Ns

D 31000 yields results sim-
ilar to OGK415. Table 3 displays the points with the largest
Di’s.

Here, too, OGK425, OGK415, and FMCD point out a break.
Of the 302 points with

p
fi µ 908, OGK425 shares 293 with

Figure 8. Ionospheric Data: Outliers. (a) Observation 95; (b) obser-
vation 96; (c) observation 41; (d) observation 27.
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314 RICARDO A. MARONNA AND RUBEN H. ZAMAR

Figure 9. Q-Q Plots of LRS Data for OGK (C) and OGK(2) (� ).

OGK415, 274 with FMCD, and 291 with SDE. All estimates
share 262 points. Of the 20 points with the largest Di , OGK425,
OGK415, and FMCD share 16.

For a more detailed analysis, we plotted the sequence of
coordinates for each observation. Figures 11(a) and (b) are
two typical forms; (c) is a point “just above the break” (with
rank order 306), and (d) is an outlier.

Points above the break are clearly different from (a) and
(b) like (d), or noisy versions of (a) and (b). We can again
conclude that the observed break reveals a real feature of the
data.

4.5 Other Datasets

Several other datasets from Bay (1999) were also analyzed,
namely Glass (n D 76, p D 75, Wine (n D 59, p D 135, VDBC
(n D 3571 p D 305, Segment 4n D 3301p D 165, Pima (n D
5001p D 8) and Sat (n D 9611p D 365. In all cases, OGK425

and FMCD yielded similar results, both � nding more structure
than SDE and OGK415.

5. EQUIVARIANCE

In this section we investigate the effects of the lack of
equivariance of our estimates on their performance. Given
X D 8x11 : : : 1xn9 and a nonsingular p � p matrix A, let
XA D 8Ax11 : : : 1Axn9. If the estimates are equivariant, then
we should have

t4XA5 D At4X5 and V4XA5 D AV4X5A01

Table 3. LRS Data: Points With the Largest Mahalanobis Distances

Estimate Points with largest D i (inverse order)

FMCD (Ns D 500) 210 173 112 90 307 2 281 193 451 67 370
SDE (Ns D 31000) 210 307 281 173 90 112 245 472 67 2 271
OGK(.9) 210 173 112 307 90 2 281 193 451 67 147
OGK(2) (.9) 210 173 112 90 307 2 281 193 451 67 370

Figure 10. Q-Q Plots of LRS Data for FMCD (C) and SDE (� ).

and hence to explore equivariance we should compare t4X5

and V4X5 with

tA4X5 D Aƒ1t4XA5 and VA4X5 D Aƒ1V4XA5Aƒ100

Because exploring all transformations is infeasible, we gen-
erated random matrices as A D TD, where T is a random
orthogonal matrix and D D diag4u11 : : : 1 up5, where the ui’s
are independent and uniformly distributed in (0,1).

The simulation of Section 3 was repeated for several of the
sampling situations. For each generated X a random A was
generated as described earlier, and the performance of tA and
VA was evaluated. In general, the results were very similar
to those for the untransformed estimates. Table 4 shows the
results for p D 51 n D 50, and ˜ D 02, choosing the “least favor-
able situations” k D 200 and k D 9, corresponding to OGK
with one and two iterations, and with or without reweighting.
The columns “V” and “t” repeat the results of Table 1, and
“tA” and “VA” correspond to the random transformation as
described earlier.

It is seen that the effect of the transformation is stronger on
V than on t. As a general pattern, the reweighted estimators
were “more equivariant” in the sense that their performances
were much less affected by the transformations.

To investigate the effect of transformations on an individ-
ual sample, we de� ne measures of “lack of equivariance” for
location and scatter, namely

dt
D ˜tA4X5ƒt4X5˜ and dV

D cond4Uƒ1VA4X5Uƒ1051

where U is any matrix such that V4X5 D UU0. Experiments
were performed with real and simulated data. As an example,
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ROBUST MULTIVARIATE ESTIMATES 315

Figure 11. LRS Data. (a) and (b) Two “typical observations,” 262
and 104; (c) one intermediate observation, 122; and (d) one outlier, 90.

we show the results corresponding to the ionospheric data of
Section 4.3. The number of random transformations was 200.
The number of iterations ranged between 1 and 4, with and
without reweighting. Because the data range between 1 and
ƒ1, no scaling was used for dt . Table 5 gives the maximum
and the �-quantiles of dV and dt for � D 051 071 08, and .9. No
improvement was found beyond the second iteration. Because
the values of dV for the estimators without reweighting were
about 100 times higher than those with reweighting, only the
latter are shown in Table 5.

Table 5 reveals that here the effect of transformations is
much stronger on V than on t. Figure 12 shows the plots
of Mahalanobis distances corresponding to different transfor-
mations: the untransformed data (as in Fig. 5) and the trans-
formations corresponding to the .80 and .90 quantiles and to
the maximum of dV . For the .80 quantile, the plot is almost
indistinguishable from that of the original data, and the order-
ing of the di’s is essentially the same as in Table 2. For the
.90 quantile, the basic features still remain, and some are still
visible in the maximum case.

The following features were observed for all of the exam-
ined datasets:

ÿ Location is much less affected than scatter.
ÿ Reweighting makes the estimates much more equivariant.

Table 4. Simulation for p D 5, n D 50, … D .2 With Fixed and Random
Coordinates

k V VA t tA

200 OGK(1) 3035 3029 6022 3001
OGK(1) (09) 065 069 020 023
OGK(2) 2050 1098 4082 1063
OGK(2) (09) 062 066 021 024

9 OGK(1) 1068 1085 097 1078
OGK(1) (09) 1058 1062 3063 3074
OGK(2) 1056 1061 3073 3092
OGK(2) (09) 1062 1065 3083 3094

Table 5. Measures of Lack of Equivariance for Ionospheric Data

.5 .7 .8 .9 Max

dV OGK(1)(09) 203 264 304 373 757
OGK(2)(09) 239 390 465 555 888

dt OGK(1)(09) 039 042 043 045 051
OGK(2)(09) 047 053 055 058 067

ÿ Further iterations do not improve on the behavior.
ÿ Although the worst case may differ from the original

data, for most transformations the results are very similar.

These results suggest that the consequences of the lack of
equivariance of the estimates are not serious.

This experiment has been conducted only to demonstrate
the behavior of the estimates. For this dataset, the original
coordinate system is clearly the most natural one.

6. COMPUTING TIMES

To compare the computing times of the different estimates,
we generated random samples with different values of n

and p. We ran the experiments on a PC with a 550-MHz
Intel Pentium processor with 128 Mb RAM. We � rst ran
them in Fortran, using for FMCD the code kindly supplied by
Rousseeuw and van Driessen. It turned out that the running
times for FMCD were at least 100 times those for OGK,
which may be due to paging. Because we could not overcome
this problem, we decided to run the experiment in Gauss
(version 3.2.32). This should be more favorable to SDE and
FMCD, because their computing effort consists mainly of
vector and matrix operations, which a matrix language like
Gauss performs very quickly, whereas almost half of the time
for OGK is spent computing medians.

To make our method run faster, we did not use the built-
in Gauss command “median,” which uses sorting. Rather, we

Figure 12. Q-Q Plots for Transformed Ionospheric Data. (a)–(d) cor-
respond to original data, .80- and .90-quantiles, and maximum of dV .

TECHNOMETRICS, NOVEMBER 2002, VOL. 44, NO. 4

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
8:

25
 0

4 
Ju

ly
 2

01
3 



316 RICARDO A. MARONNA AND RUBEN H. ZAMAR

Table 6. Times for Simulated Data in Seconds a D b + c � d

p

Estimate n 20 40 60 80

FMCD 200 1309 4206 8908 20207
(Ns D 500) 400 3306 8603 17105 41706

800 7409 17809 33305 72600
SD 200 300 907 2507 5709
(Ns D 500) 400 407 1205 2706 6503

800 803 1700 3706 7001
OGK 200 046 105 306 703

400 087 309 504 1109
800 106 700 1203 1706

used a selection algorithm (the procedure “select” in section
8.5 of Press et al. (1992), which is linear in n.

We implemented steps 1–4 of the algorithm in section 5
of Rousseeuw and van Driessen (1999). The running times
of SDE, FMCD, and OGK415 were measured for 20% con-
taminated normal samples with p D 201 401 60, and 80 and
n D 2001400, and 800. The number of subsamples was Ns

D
500 in all cases. Whereas the running times of SDE and OGK
are practically independent of the dataset, this is not so for
FMCD, which seems to require more time (i.e., more itera-
tions) for contaminated data than for pure normal data.

We have not tried larger n’s for several reasons. First, we
were concerned with the problem of large p than large n.
Second, when n is larger than a certain n0 (the default is 600),
Rousseeuw and van Driessen’s FMCD algorithm applies an
ingenious splitting procedure to reduce the number of evalua-
tions. For OGK, a time-saving procedure may be as follows.
When n is larger than some n0, take a random subsample of
size n1 and use it to perform steps 1, 2, and 3 of the de� ni-
tion in Section 2; then use the whole sample for (4) and (7);
n1 probably should depend on p. It is dif� cult to determine
theoretically how much the statistical performance of FMCD
and OGK deteriorates with this savings, so that further exper-
iments would be necessary to determine an adequate choice
of n0 and n1.

Table 6 gives the running times in seconds. It is seen
that those for FMCD are between 22 and 46 times those
for OGK415. Note that the values of Ns actually required by
SDE are much larger than the 500 used for testing. Actually,
the number of subsamples required to ensure an average of
� ve “good” ones for ˜ D 02 and p D 20140160, and 80 are
around 40014 � 10413 � 106, and 3 � 108. Table 7 shows the
running times for the real datasets in the preceding section,
in seconds.

Table 7. Times for Real Datasets

Dataset n p NSD NFM OGK SDE FMCD

Bush’ re 38 5 500 500 004 04 08
Engineering 677 9 21000 500 032 1409 2003
Ionospheric 225 31 31000 500 101 2903 2102
Spectral 531 93 31000 500 1904 45803 61506

7. DISCUSSION

There is probably no estimate that is fully satisfactory.
FMCD is equivariant, but—although the empirical results with
Ns

D 500 are satisfactory—it is dif� cult to determine for a
given p which Ns ensures a given breakdown point. Moreover,
the simulations show that it may behave poorly under point
mass contamination. SDE is equivariant, and for moderate p it
does a good job under point mass contamination, but with real
data, it seems to fail to detect interesting structures, and for
large p, it requires impractically large values of Ns to ensure
a high breakdown point. Finally, OGK is not equivariant, but
it performs well in simulations with point mass contamination
and performs similarly to FMCD with high-dimensional real
data, all at a computational cost much lower than that of its
competitors. The weighted versions are better and are “more
equivariant,” as demonstrated in Section 5. Iterating seems
advantageous; OGK4254095 is better than OGK4154095 for the
real datasets in Sections 4.2, 4.3, and 4.5. It must be added
that even for moderate datasets, a very fast procedure has the
advantage of allowing the use of computer-intensive methods,
such as the bootstrap and cross-validation.
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