Eur J Med Chem (1997) 32, 661–668 © Elsevier, Paris

661 Laboratory note

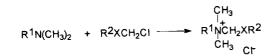
Synthesis and antimicrobial activities of new quats

A Skrzypczak¹, B Brycki², I Mirska³, J Pernak^{1*}

¹Poznań University of Technology, Skł odowskiej-Curie 2, 60–965 Poznań;
 ²Adam Mickiewicz University, Grunwaldzka 6, 60–780 Poznań;
 ³University School of Medical Sciences, Sieroca 10, 61–771 Poznań, Poland

(Received 14 October 1996; accepted 27 January 1997)

Summary — (Alkoxymethyl)dodecyldimethylammonium, (cycloalkoxymethyl)dodecyldimethylammonium, (alkylthiomethyl)dodecyldimethylammonium, (alkoxymethyl)dimethyloctylammonium, (cycloalkoxymethyl)dimethyloctylammonium and (alkylthiomethyl)dimethyloctylammonium chlorides were prepared in high yield. All the chlorides studied showed antimicrobial activity. The relationship between the chemical structure and antimicrobial activity was analyzed using the rough sets method.


(alkoxymethyl)alkyldimethylammonium chloride / (cycloalkoxymethyl)alkyldimethylammonium chloride / (alkylthiomethyl)alkyldimethylammonium chloride / antimicrobial activity / rough sets method

Introduction

Quaternary ammonium compounds (quats) are the essential compounds for many antimicrobials. After Domagk's discovery in 1935 [1] of the biocidal properties of quats, several generations of structurally variable quats were developed. The fact that quats are cationic surfactants allows the user to apply them in a variety of ways. We decided to look for new quats that might prove more effective in the antimicrobial field.

Chemistry

The new quats 1–72 (tables I, II) were prepared by the reaction of dodecyldimethylamine or dimethyloctylamine with chloromethylalkyl ethers or sulfides or chloromethylcycloalkyl ethers.

The yield from this reaction was very good, ie, between 95 to 80%. Dodecyldimethylamine and dimethyloctylamine were commercially available. Chloromethylalkyl ethers or sulfides or chloromethylcycloalkyl ethers were synthesized from alcohols, thiols or cycloalkohols.

Antimicrobial activity

All chlorides **1–72** were tested for antibacterial activity against *Staphylococcus aureus* ATCC 6538. The most active chlorides resulting from the rough sets method were tested for the antimicrobial activities of the 12 organisms presented in table IX.

Result and discussion

All synthesized chlorides were hygroscopic and had to be kept over phosphorus pentoxide. They are active against *Staphylococcus aureus* ATCC 6538. Their activity depends on the length and kind of substituent at the quaternary nitrogen atom. The relationship between the chemical structure and antibacterial activity was analyzed via the rough sets method [2, 3]. This method was successfully used in the analysis of relationships between the structure and the anti-

^{*}Correspondence and reprints

Chloride	XR ²	Yield (%)	Chloride	<i>XR</i> ²	Yield (%)	Chloride	XR ²	Yield (%)
1	OC ₂ H ₅	90	13	OCH ₂ CH(CH ₃) ₂	91	25	OC ₆ H ₁₁	91
2	OC_4H_9	92	14	O(CH ₂) ₂ CH(CH ₃) ₂	93	26	OC ₆ H ₁₀ -4-CH ₃	89
3	OC ₆ H ₁₃	93	15	OCH ₂ CH(CH ₃)CH ₂ CH ₃	92	27	OC ₇ H ₁₃	92
4	OC ₈ H ₁₇	94	16	OCH(CH ₃)(CH ₂) ₂ CH ₃	90	28	OC ₈ H ₁₅	91
5	OC ₁₀ H ₂₁	92	17	OCH ₂ CH(CH ₂ CH ₃) ₂	91	29	OC ₁₂ H ₂₃	90
6	OC ₁₂ H ₂₅	90	18	OCH ₂ CH(CH ₃)(CH ₂) ₂ CH ₃	91	30	SC_4H_9	82
7	OC ₃ H ₇	91	19	OCH(CH ₂ CH ₂ CH ₃) ₂	93	31	SC_6H_{13}	82
8	OC_5H_{11}	95	20	OCH ₂ CH(C ₂ H ₅)(CH ₂) ₃ CH ₃	91	32	SC ₈ H ₁₇	84
9	OC ₇ H ₁₅	93	21	OCH(CH ₃)(CH ₂) ₅ CH ₃	90	33	$SC_{10}H_{21}$	83
10	OC_9H_{19}	91	22	OCH(C ₂ H ₅)(CH ₂) ₄ CH ₃	92	34	$SC_{12}H_{25}$	80
11	$OC_{11}H_{23}$	90	23	O(CH ₂) ₂ CH(CH ₃)(CH ₂) ₃ CH(CH ₃) ₂ 91	35	$SC_{3}H_{7}$	82
12	OCH(CH ₃)	92 92	24	OC ₅ H ₉	94	36	SC_5H_{11}	83

Table I. (Alkoxymethyl)-, (cycloalkoxymethyl)- and (alkylthiomethyl)dimethyldodecylammonium chlorides.

 Table II. (Alkoxymethyl)-, (cycloalkoxymethyl)- and (alkylthiomethyl)dimethyloctylammonium chlorides.

Chloride	XR ²	Yield (%)	Chloride	XR^2	Yield (%)	Chloride	XR ²	Yield (%)
37	OC ₂ H ₅	90	49	OCH ₂ CH(CH ₃) ₂	91	61	OC ₆ H ₁₁	95
38	OC ₄ H ₉	93	50	O(CH ₂) ₂ CH(CH ₃) ₂	92	62	OC_6H_{10} -4- CH_3	90
39	OC_6H_{13}	95	51	OCH ₂ CH(CH ₃)CH ₂ CH ₃	93	63	OC ₇ H ₁₃	94
40	OC ₈ H ₁₇	95	52	OCH(CH ₃)(CH ₂) ₂ CH ₃	91	64	OC_8H_{15}	94
41	$OC_{10}H_{21}$	94	53	OCH ₂ CH(CH ₂ CH ₃) ₂	91	65	OC ₁₂ H ₂₃	91
42	OC ₁₂ H ₂₅	91	54	OCH ₂ CH(CH ₃)(CH ₂) ₂ CH ₃	93	66	SC ₄ H ₉	82
43	OC ₃ H ₇	92	55	OCH(CH ₂ CH ₂ CH ₃) ₂	94	67	SC_6H_{13}	81
44	OC ₅ H ₁₁	94	56	OCH ₂ CH(C ₂ H ₅)(CH ₂) ₃ CH ₃	90	68	SC ₈ H ₁₇	83
45	OC ₇ H ₁₅	95	57	OCH(CH ₃)(CH ₂) ₅ CH ₃	91	69	$SC_{10}H_{21}$	80
46	OC_9H_{19}	94	58	OCH(C ₂ H ₅)(CH ₂) ₄ CH ₃	92	70	SC ₁₂ H ₂₅	80
47	$OC_{11}H_{23}$	91	59	OCH ₂ CH ₂ CH(CH ₃)(CH ₂) ₃ CH(CH ₃)) ₂ 92	71	SC ₃ H ₇	84
48	OCH(CH ₃)) ₂ 90	60	OC ₅ H ₉	94	72	SC_5H_{11}	85

bacterial activity of quaternary imidazolium [4, 5], pyridinium [6], quinolinium and isoquinolinium compounds [7] and in the analysis of medical data [8].

Synthesized chlorides are divided into three classes of antibacterial activity. The classes correspond to the following ranges of minimum inhibitory concentration (MIC): class 1, highly effective; MIC \leq 27.6 μ M/L; class 2, fairly effective; 27.6 < MIC < 100 μ M/L; class 3, slightly effective; MIC \geq 100 μ M/L.

The attributes describing the structure of 72 chlorides are presented in table III. Table IV presents the information system. The decision rules obtained from the information system upon removal of two insignificant condition attributes, ie, 1 and 3, are shown in table V.

The most active compounds against *Staphylococcus* aureus ATCC 6538 are chlorides with: $R^2 = 1$ -methylbutyl, 3,8-dimethyloctyl, 2-ethylhexyl, *n*-nonyl and cyclododecyl (rules 1–5); $R^2 =$ ethyl, *n*-propyl, *n*-butyl, *n*-pentyl, *n*-heptyl, *n*-octyl, *n*-decyl, *n*-undecyl, cyclopentyl and cyclohexyl; $R^1 =$ dodecyl (rules 6–15); $R^2 =$ *n*-decyl; $R^1 =$ octyl (rule 16).

These rules clarify which chlorides obtained are the most active. Of the 72 synthesized chlorides, 39 belong to one class of activity. These are the following: 1, 2, 4, 7–25, 27, 29–32, 34–36, 40–42, 46, 52, 56, 59, 65 and 69 for which antimicrobial activities were tested. The MIC and minimum bactericidal or fungicidal concentration (MBC) were measured. The obtained MIC and MBC values for 39 chlorides are given in tables VI–VIII.

In general, chlorides (alkoxymethyl)dodecyldimethylammonium, (cycloalkoxymethyl)dodecyldimethylammonium, (alkythiomethyl)dodecyldimethylammonium, (alkoxymethyl)dimethyloctylammonium, (cycloalkoxymethyl)dimethyloctylammonium and (alkylthiomethyl)dimethyloctylammonium are highly active against cocci. Activity against bacilli, rods and fungi is a little weaker, but is also at a high level. In comparison with commercially available didecyldimethylammonium chloride 73, the nine tested chlorides 1, 4, 8, 9, 18, 21, 22, 31 and 41 had comparable mean values for MIC and MBC (tables VI–VIII) and in one case chloride 10 was more active.

To summarize, 10 new quats, potential substitutes for the well-known didecyldimethylammonium chloride were found, as follows: dodecyl(ethoxymethyl)dimethylammonium 1, dodecyldimethyl(octyloxymethyl)ammonium 8, dodecyldimethyl(pentyloxymethyl)ammonium 9, dodecyldimethyl(nonyloxymethyl)ammonium 10, dodecyldimethyl(2-methylpentyloxymethyl)ammonium 18, dodecyldimethyl(1methylheptyloxymethyl)ammonium 21, dodecyl(2ethylhexyloxymethyl)dimethylammonium 31 and (decyloxymethyl)octyldimethylammonium 41.

Experimental protocols

Chemistry

NMR spectra were recorded on a Varian Model XL 300 spectrometer at 300 MHz for ¹H and 75 MHz for ¹³C in CDCl₃ at 20 °C with tetramethylsilane as internal reference. Satisfactory elemental analyses were obtained; ie: C \pm 0.36, H \pm 0.31 and N \pm 0.29.

No	Attribute					C	ode valı	ие						
		0	1	2	3	4	5	6	7	8	9	10	П	12
1	Type of X	Oxygen	Sulphur											
2	Type of R ¹	C ₈ H ₁₇	$C_{12}H_{25}$											
3	Type of R ²	n-Alkyl	Alkyl	Cykloalkyl										
4	Type of <i>n</i> -alkyl	Without	_	C_2H_5	C_3H_7	C_4H_9	C_5H_{11}	C_6H_{13}	$C_{7}H_{15}$	C_8H_{17}	$C_{9}H_{19}$	$\mathbf{C}_{10}\mathbf{H}_{21}$	C ₁₁ H ₂₃	$C_{\iota_2} H_{_{25}}$
5	Type of alkyl	Without	$C_3H_7^a$	$C_4 H_9^{\ b}$	$C_5H_{11}^{c}$	$C_5 H_{11}{}^d$	$C_5H_{11}^{e}$	$\mathbf{C_6}\mathbf{H_{13}}^{\mathrm{f}}$	$C_{6}H_{13}{}^{g}$	$C_7 H_{15}^{h}$	$\mathbf{C}_{8}\mathbf{H}_{17}^{\mathbf{i}}$	$C_8 H_{17}{}^j$	$C_8 H_{17}^{\ k}$	$C_{10}H_{21}^{-1}$
6	Type of cykloalkyl	Without	C ₅ H ₉	C_6H_{11}	$C_7 H_{13}^{m}$	C ₇ H ₁₃	C_8H_{15}	$C_{12}H_{23}$						

 $\label{eq:ch(CH_3)_2} \ ^{b}CH_2CH(CH_3)_2; \ ^{b}CH_2CH(CH_3)_2; \ ^{c}(CH_2)_2CH(CH_3)_2; \ ^{d}CH_2CH(CH_3)_3CH_2CH_3; \ ^{e}CH(CH_3)(CH_2)_2CH_3; \ ^{f}CH_2CH(CH_2CH_3)_2; \ ^{2}CH_2CH(CH_3)_3CH_3; \ ^{i}CH(CH_3)(CH_2)_3CH_3; \ ^{k}CH(C_2H_5)(CH_2)_4CH_3; \ ^{i}CH(CH_3)(CH_2)_5CH_3; \ ^{k}CH(C_2H_5)(CH_2)_4CH_3; \ ^{i}CH_3CH(CH_3)(CH_2)_3CH(CH_3)_2; \ ^{i}CH_3CH(CH_3)_2; \ ^{i}CH_3CH(CH_3)(CH_2)_3CH_3; \ ^{i}CH_3CH(CH_3)_2; \ ^{i}CH_3CH(CH_3)_2; \ ^{i}CH_3CH(CH_3)_3CH_3; \ ^{i}CH_3CH(CH_3)(CH_3)_3CH_3; \ ^{i}CH_3CH(CH_3)_3CH_3; \ ^{i}CH_3CH(CH_3)_3CH_3; \ ^{i}CH_3CH(CH_3)_3CH_3; \ ^{i}CH_3CH(CH_3)_3CH_3; \ ^{i}CH_3CH_3CH_3; \ ^{i}CH_3CH_3; \ ^{i}CH_3; \ ^{i}CH_3CH_3; \ ^{i}CH_3CH_3; \ ^{i}CH_3; \ ^{i}CH_3; \ ^{i}CH_3; \ ^{i}CH_3;$

Table III. Domains of condition attributes.

Table IV. Information system.

Chloride		Con	dition at	tributes			Class
	1	2	3	4	5	6	
1	0 0	1	0	2 4	0	0	1
$\frac{2}{3}$	0	1	ő	6	0 0	0 0	1 3
1 2 3 4 5 6 7 8	0	1	0	8	0	0	1
5	0 0	1	0	10 12	0 0	$\begin{array}{c} 0\\ 0\end{array}$	3 3
7	0	1	0		0	0	1
8 9	0 0	1	0 0	3 5 7	0 0	0 0	1 1
10	0	l	ŏ	9	0	ŏ	1
11 12	$\begin{array}{c} 0\\ 0\end{array}$	1	0	11	0	0	1
12	0	1	1	0 0	$\frac{1}{2}$	0 0	1 1
14	0	1	1	0	2 3 4 5 6 7	0	1
15 16	0 0	1	1	0 0	4	0 0	1 1
17	0	1	1	0	6	0	1
18 19	0 0	1	1	0 0	7	$\begin{array}{c} 0\\ 0\end{array}$	1 1
20	Ő	1	1	Ő	8 9	ŏ	1
21	0	1	1	0	10	0	1
22 23	0 0	1	1 1	0 0	11 12	$\begin{array}{c} 0\\ 0\end{array}$	1 1
24	0	1		0	0	1	1
25 26	0 0	1	2	0 0	0 0	2 3 4	1 3
27	0	i	2 2 2 2 2 2 2 0	0	ŏ	4	1
28	0	1	2	0	0	5	3
29 30	0 1	1 1	0	0 4	0 0	0	1 1
31	1	1	0	6	0	0	1
32 33	1	1	0 0	8 10	$\begin{array}{c} 0\\ 0\end{array}$	0 0	1 3
34	1	1	ŏ	12	0	0	1
35 36	1	1	0 0	3 5 2 4	0 0	0 0	1 1
30 37	0	0	ŏ	2	0	0	
38	0	0	0	4	0	0	3 3 2 1
39 40	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0	6 8	0 0	$\begin{array}{c} 0\\ 0\end{array}$	2
41	0	0	0	10	0	0	1
42 43	0 0	$\begin{array}{c} 0\\ 0\end{array}$	0	12	0 0	$\begin{array}{c} 0\\ 0\end{array}$	1
44	0	0	ŏ	3 5 7	0	0	3 3 1 3 3 3 3 3
45 46	0 0	$\begin{array}{c} 0\\ 0\end{array}$	$\begin{array}{c} 0\\ 0\end{array}$	7 9	0 0	0 0	3
40	Ő	ŏ	0	11	Ő	0	3
48	0	0	1	0	1	0	3
49 50	$\begin{array}{c} 0\\ 0\end{array}$	0 0	1 1	0	2 3	$\begin{array}{c} 0\\ 0\end{array}$	3
51	0	0	1	0	4	0	2
52 53	0 0	0 0	1 1	0 0	5 6	0 0	1
55	0	0	1	0	7	0	3
55 56	0 0	0 0	1 1	0 0	8 9	$\begin{array}{c} 0\\ 0\end{array}$	3
50 57	0	Ő	1	0	10	0	2
58	0	0	1	0	11	0	3
59 60	0 0	0 0	1 2	0 0	11 12 0	0 1	3
61	0	0 0	2	0	0 0	2	3
54 55 56 57 58 59 60 61 62 63	0 0	0 0	$\frac{2}{2}$	0 0	$\begin{array}{c} 0\\ 0\end{array}$	3 4	3
64	0	0	2 2 2 2 2 2 2 0	0	0	1 2 3 4 5 6	1 3 3 1 2 3 1 3 3 2 3 1 3 3 1 3 3 1 3 3 3 3
64 65 66 67 68 69 70	0	0	2	0	0		1
00 67	1 1	0 0	0	4 6	0 0	$\begin{array}{c} 0\\ 0\end{array}$	3 3
68	1	0	0	8	0	0	3
69 70	1 1	$\begin{array}{c} 0\\ 0\end{array}$	0 0	10 12	0 0	0 0	1
71 72	1	0	0	3 5	0	0	3
73	1	0	0	5	0	0	3

Rules		Attr	ibute		Class
	2	4	5	6	
1			5		1
23			12 9		1 1
1 2 3 4 5 6 7 8 9		9	,		1
5				6	1
6	1 1	4 8 3 5			1
8	1	8			1 1
9	1	5			1
10	1			1	1
11 12 13	1	2		2	1
12	1	7		2	1 1
14 15	1			4	1
15	1	11 10			1
16	0 0	10	4		1
17 18	0		4 10		$\frac{2}{2}$
19	ŏ		10	4	$\frac{2}{2}$
20				4 3 5	3
20 21 22 23 24	0	4		5	3
23	0	4	1		3
24	0	3			3
25	0		2 3		3
25 26 27 28	$\begin{array}{c} 0\\ 0\end{array}$	5	3		3
28	0	5		1	3
29	0		6		3
30 31	0	•		2	3
31	$\begin{array}{c} 0\\ 1\end{array}$	2 10			3
32 33	0	10	7		3
34	0		7 8		3
35	0	7 11			3
36 37	0 0	11	11		1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
38	1	6	11		1 or 3
38 39	Ô	8			1 or 3
40	0	6 8 12 6			1 or 3 1 or 3 1 or 3 2 or 3
41	0	0			2 or 3

Table V. Decision algorithm for classification of examined chlorides.

Chloromethylalkyl ethers and sulfides and chloromethylcycloalkyl ethers were prepared via the procedures which have been reported earlier [9]. The percentage of ether or sulfide in a crude product was determined by an alkalimetric method: 1 g crude product was added to 10 mL acetone at -40 °C. Free HCI (substrate) was quickly neutralized with 1% KOH in EtOH and 3 mL water was added. The mixture was stirred at 40 °C for 15 min. HCl as a product of hydrolysis of ether or sulfide was neutralized with 2% KOH in EtOH. The crude product contained 96–86% chloromethylalkyl ether, 79–65% chloromethylalkyl sulfide and 95–82% chloromethylcycloalkyl ether.

Strainsb)						(Chloride	s					
		1	2	4	7	8	9	10	11	12	13	14	15	16
I	MIC	2.27	0.89	0.76	3.10	3.57	0.26	1.72	2.3	2.17	2.98	7.14	0.86	3.43
	MBC	2.27	0.89	0.76	3.10	7.14	1.32	3.69	2.3	4.66	2.98	7.14	2.00	3.43
II	MIC	9.74	0.89	6.38	1.55	3.57	1.32	3.69	2.3	9.32	14.9	7.14	0.86	7.14
	MBC	40.6	0.89	12.8	1.55	14.3	1.32	7.39	2.3	18.6	149	7.14	4.29	7.14
III	MIC	4.87	4.46	1.53	1.55	3.57	1.32	3.69	11.5	9.32	2.98	3.57	4.29	7.14
	MBC	9.74	4.46	6.38	1.55	3.57	2.64	3.69	23.0	9.32	14.9	7.14	4.29	7.14
IV	MIC	4.87	4.46	0.77	1.55	3.43	1.32	3.69	11.5	9.32	14.9	7.14	2.00	7.14
	MBC	9.74	4.46	3.82	3.10	7.14	2.64	14.8	115	18.6	29.8	7.14	8.57	14.3
v	MIC	4.87	0.89	1.53	1.55	3.57	1.32	7.39	2.3	9.32	2.98	7.14	4.29	1.71
	MBC	9.74	17.9	25.5	1.55	14.3	1.32	7.39	230	18.6	149	7.14	4.29	3.43
VI	MIC	325	298	128	1550	143	132	29.5	115	1550	1490	1430	143	1430
	MBC	325	298	128	1550	143	132	29.5	2300	1550	1490	1430	1430	1430
VII	MIC	40.6	74	25.5	155	143	132	29.5	1150	311	149	143	71	143
	MBC	40.6	149	128	155	143	132	123	2300	311	149	143	71	143
VIII	MIC	19.5	179	12.8	155	143	13.2	7.39	115	78	149	143	171	143
	MBC	40.6	179	12.8	310	143	13.2	29.5	230	155	149	143	71.4	143
IX	MIC	40.6	74	25.5	31.0	7.14	13.2	62	230	78	29.8	143	35.7	143
	MBC	40.6	74	25.5	155	14.3	24.4	62	230	155	29.8	143	35.7	143
Х	MIC	162	74	255	310	143	132	123	2300	311	298	143	35.7	143
	MBC	162	298	255	310	143	132	123	5760	311	298	143	71.4	143
XI	MIC	81	74	128	155	28.6	13.2	62	115	311	298	28.6	71.4	143
	MBC	162	74	128	155	28.6	26.4	62	115	311	298	28.6	71.4	143
XII	MIC	19.5	8.93	12.8	31.1	7.14	13.2	14.7	23.0	78	149	28.6	17.1	28.6
	MBC	19.5	37.2	12.8	155	7.14	13.2	29.5	1150	155	149	28.6	35.7	57.1
Mean	MIC	59.6	66.1	49.9	200	52.7	37.9	29.0	340	230	217	174	33.6	183
values	MBC	71.9	94.8	61.6	233	55.7	40.4	41.3	1038	251	242	175	151	186

Table VI. MIC and MBC^a of examined chlorides.

^aMIC and MBC in µM/L; ^bthe number of microorganisms in mL ranged from 10⁴ to 10⁵.

Synthesis

The ammonium chlorides were prepared by dissolving dimethyldodecylamine or dimethyloctylamine in heptane and adding equimolar amounts of the appropriate chloromethylalkyl ether or sulfide or chloromethylcycloalkyl ether. The mixture was stirred and heated under reflux for 10 min when ether was used and for 6 h when sulfide was used. After cooling the solution to room temperature the crude product was separated, extracted and the residue dried in vacuo to give the pure product. The yields were 95–86% for chlorides 1–29 and 37–65; 89–80% for chlorides 30–36 and 66–72. (Cyclododecyloxymethyl)dodecyldimethylammonium chloride **29** (oil): ¹H-NMR δ ppm: 4.99 (s, 2H), 3.95 (m, 1H), 3.50 (m, 2H), 3.33 (s, 6H), 1.72 (m, 6H), 1.33 (m, 26H), 0.90 (t, *J* = 6 Hz, 3H); ¹³C-NMR δ ppm: 87.5, 80.7, 60.4, 46.9, 31.3, 29.2, 29.0, 28.9, 28.8, 28.7, 28.6, 28.1, 25.9, 24.6, 24.3, 22.3, 22.1, 21.9, 19.5, 13.6. (Dodecylthiomethyl)dimethyloctylammonium chloride **70** (oil): ¹H-NMR δ ppm: 5.13 (s, 2H), 3.65 (m, 2H), 3.38 (s, 6H), 3.01 (t, *J* = 7 Hz, 2H), 1.72 (m, 4H), 1.36 (m, 28H), 0.90 (t, *J* = 7 Hz, 6H); ¹³C-NMR δ ppm: 48.4, 42.2, 35.1, 31.2, 31.0, 29.2, 29.0, 28.8, 28.7, 28.6, 28.5, 28.4, 27.9, 25.8, 22.0, 21.9, 13.5, 13.4.

Table VII. MIC and MBC^a of examined chlorides.

Strains ^b			Chlorides														
		17	18	19	20	21	22	23	24	25	27	29	30	31			
I	MIC	1.37	1.65	0.40	2.55	0.77	2.55	2.38	1.44	11.0	13.3	1.57	2.84	13.1			
	MBC	13.7	3.30	0.79	12.8	1.53	12.8	2.38	1.44	11.0	13.3	3.36	2.84	131			
II	MIC	1.37	6.87	1.59	1.28	12.8	1.28	11.9	2.87	13.8	13.3	3.36	1.42	13.1			
	MBC	2.75	13.7	1.59	1.28	12.8	1.28	23.9	14.4	138	13.3	3.36	2.84	26.3			
III	MIC	2.75	1.65	1.59	12.8	1.53	2.55	11.9	1.44	1.38	13.3	3.36	2.84	13.1			
	MBC	13.7	3.43	3.17	25.5	3.06	25.5	23.8	14.4	27.6	26.6	3.36	14.2	131			
IV	MIC	2.75	1.65	6.61	12.8	1.53	1.28	11.9	2.87	2.76	13.3	13.4	14.2	13.1			
1,	MBC	27.5	3.30	6.61	12.8	3.06	25.5	23.8	14.4	13.8	26.6	26.9	14.2	26.3			
v	MIC	2.75	1.65	3.31	1.28	3.06	1.28	11.9	2.87	2.76	2.66	1.57	2.84	13.1			
v	MBC	27.5	1.65	6.61	0.77	2.55	7.65	23.8	2.87	13.8	2.66	6.72	2.84 28.4	13.1			
VI	MIC	1370	137	2650	255	255	128	2380	1440	276	1330	1120	142	131			
V I	MBC	1370	137	2650 2650	233 1280	255 255	128 255	11900	1440 1440	276 276	1330	2240	142	131			
3711	MIC	27.5	27.5	122	120	<u> </u>	25.5	220	144	120	12.2	110	140	26.2			
VII	MIC MBC	27.5 137	27.5 27.5	132 132	128 128	25.5 25.5	25.5 128	238 238	144 144	138 138	13.3 133	112 224	142 142	26.3 131			
VIII	MIC MBC	27.5 27.5	13.7 13.7	26.4 26.4	25.5 25.5	25.5 25.5	12.8 25.5	119 238	144 287	138 138	26.6 133	26.9 112	142 142	26.3 26.3			
IX	MIC MBC	13.7 27.5	137 137	132 132	25.5 128	128 128	12.8 12.8	238 238	28.7 144	13.8 13.8	26.6 26.6	11.2 22.4	14.2 14.2	2.63 2.63			
	MDC	21.5	157	152	120	120	12.0	238	144	15.8	20.0	22.4	14.2	2.05			
Х	MIC	137	137	132	255	255	128	1190	144	138	133	1120	142	131			
	MBC	275	137	132	2550	255	255	1190	287	138	133	1120	142	131			
XI	MIC	27.5	27.5	26.4	12.8	25.5	12.8	238	144	138	26.6	26.9	142	26.3			
	MBC	27.5	27.5	26.4	25.5	128	12.8	1190	144	138	26.6	26.9	1420	263			
XII	MIC	13.7	6.87	6.61	12.8	12.8	2.55	119	14.4	13.8	13.3	13.4	14.2	13.1			
	MBC	13.7	13.7	13.2	12.8	128	128	119	14.4	13.8	13.3	112	28.4	13.1			
Mean	MIC	136	41.7	260	62	62	27.6	381	173	73.9	135	204	63.5	35.2			
values	MBC	164	43.2	261	350	91	74.2	1277	211	88.3	156	325	174	85.5			

^aMIC and MBC in μ M/L; ^bthe number of microorganisms in mL ranged from 10⁴ to 10⁵.

Strai	ns ^b		Chlorides													
<u></u>		32	34	35	36	40	41	42	46	52	56	59	65	69	73°	
I	MIC	12.1	0.54	0.15	0.14	14.9	13.7	1.28	2.86	34	14.9	1.37	12.8	1.32	1.38	
	MBC	12.1	5.38	2.96	0.27	14.9	137	12.8	14.3	34	14.9	2.75	128	2.63	27.6	
II	MIC	24.5	1.08	1.5	13.7	29.8	2.75	1.28	2.86	34	7.4	1.37	1.28	2.63	2.76	
	MBC	24.5	10.8	2.96	13.7	29.8	13.7	12.8	2.86	34	7.4	13.7	12.8	13.2	2.76	
III	MIC	12.1	5.38	15	13.7	14.9	2.75	1.28	2.86	0.03	7.4	13.7	2.56	26.3	27.6	
	MBC	12.1	5.38	15	13.7	14.9	27.5	25.5	2.86	17.0	7.4	13.7	12.8	26.3	27.6	
IV	MIC	12.1	10.8	15	13.7	149	13.7	12.8	14.3	17.0	7.4	27.5	2.56	13.2	1.38	
	MBC	24.4	53.8	29.6	13.7	149	13.7	25.5	143	17.0	74	137	128	26.3	138	
v	MIC	12.1	10.8	2.96	2.73	2.98	2.75	1.28	14.3	34	7.4	2.75	2.56	13.2	0.28	
	MBC	24.5	10.8	150	13.7	14.9	2.75	25.5	143	170	74	13.7	12.8	26.3	27.6	
VI	MIC	245	10800	1500	1370	1490	137	128	1430	3400	1490	2750	1280	1320	13.8	
	MBC	1225	10800	1500	1370	1490	137	255	2860	3400	1490	2750	1280	1320	13.8	
VII	MIC	123	10800	296	137	149	27.5	128	28.6	1700	149	27.5	12.8	132	13.8	
	MBC	245	10800	296	137	149	27.5	128	286	1700	149	27.5	12.8	132	13.8	
VIII	MIC	123	215	148	27.3	149	2.75	12.8	149	170	298	1370	25.6	132	13.8	
	MBC	245	215	296	137	149	13.7	15.5	286	1700	298	1370	25.6	132	13.8	
IX	MIC	24.5	108	148	137	29.8	27.5	25.5	14.3	340	149	27.5	12.8	13.2	2.76	
	MBC	245	108	296	137	29.8	27.5	25.5	143	1700	149	27.5	12.8	13.2	2.76	
х	MIC	2450	10800	296	137	298	275	255	143	1700	149	1370	12.8	2630	276	
	MBC	2450	10800	296	137	298	275	1280	143	1700	298	1370	25.6	2630	276	
XI	MIC	24.5	215	296	27.3	298	137	12.8	28.6	1700	149	13.7	25.6	132	13.8	
	MBC	24.5	1080	296	137	298	137	25.5	286	3400	149	1370	256	132	13.8	
XII	MIC	12.2	215	29.6	13.7	29.8	27.5	12.8	143	170	29.8	13.7	12.8	26.3	13.8	
	MBC	122	1080	29.6	13.7	149	27.5	12.8	143	1700	149	13.7	25.6	132	13.8	
Mean	MIC	257	2783	231	159	224	58.8	49.4	164	789	207	469	118	372	31.8	
value	s MBC	388	2914	268	177	232	70.0	155	350	1298	238	592	161	382	47.6	

Table VIII. MIC and MBC^a of examined chlorides and didecyldimethylammonium chloride.

^aMIC and MBC in μ M/L; ^bthe number of microorganisms in mL ranged from 10⁴ to 10⁵; ^cdidecyldimethylammonium chloride.

Table IX. Strains of microorganisms.

Type no	Strain
I	Cocci Micrococcus luteus ATCC 9341
II	Staphylococcus epidermidis ATCC 12228
III	Staphylococcus aureus ATCC 6538
IV	Staphylococcus aureus (MRSA) ATCC 33592
V	Bacilli Bacillus subtilis NCTC 10452
VI	Rods Serratia marcescens ATCC 8100
VII	Klebsiella pneumoniae ATCC 4352
VIII	Proteus vulgaris NCTC 4635
IX	Escherichia coli NCTC 8196
Х	Pseudomonas aeruginosa ATCC 15442
XI	Fungi <i>Candida albicans</i> ATCC 10231
XII	Rhodotorula rubra PhB

Antimicrobial activity

The microorganisms which were used are presented in table IX. Standard strains were supplied by the National

Collection of Type Cultures (NCTC) London and American Type Culture Collection (ATCC). The *Rhodotorula rubra* (PhB) strain was taken from the Department of Pharmaceutical Bacteriology, University School of Medical Sciences, Poznań.

MIC was determined by the tube dilution method. A series of chloride dilutions were prepared on Müller–Hinton broth medium (bacteria) or Sabouraud broth medium (fungi). Microorganism growth was determined visually and the lowest chloride concentration which inhibited the multiplication of cells for 24 h at 37 °C was taken as the MIC.

MBCs of the tested chlorides were interpreted as follows: from each tube a sample was cultured on a solid medium with inactivator (2.5% lecitin, 5% lubrol W and 5% polysorbate 80) and after incubation for 48 h at 37 °C (bacteria) or at 28 °C (fungi) results were read out. For the lowest concentration no colony formation was defined as the MBC.

Acknowledgments

We are grateful for the financial support received from Iodex SA. Poland and the Polish Committee for Scientific Research DS 222/96.

References

- 1 Domagk G (1935) Dtsch Med Wochenschr 61, 829-832
- 2 Pawlak Z (1991) Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Acad Publ, Dordrecht
- 3 Słowiński R, ed (1992) Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Acad Publ, Dordrecht
- 4 Krysiński J (1990) Arzneim Forsch Drug Res 40, 795-799
- 5 Krysiński J (1995) J Pharm Sci 84, 243-248
- 6 Krysiński J (1991) Pharmazie 46, 878-881
- 7 Krysiński J (1991) Arch Pharm (Weinheim) 324, 827-832
- 8 Słowiński K, Słowiński R, Stefanowski (1988) J Med Inform 13, 143-159
- 9 Bedford CD, Harris RN, Howd RA et al (1989) J Med Chem 32, 493-516