
Vo'-17 No.6 J. Comput. Sci. & Techno2 Nov. 2002

Lower B o u n d Es t imat ion of Hardware Resources for
Schedul ing in High-Leve l Synthes i s

Shen Zhaoxuan and Jong Ching Chuen

School of Electrical and Electronic Engineering
Nanyang Technological University, Nanyan9 Avenue, Singapore 639798

E-mail: eccjong@ntu.edu.sg

Received January 28, 2002; revised April 1, 2002.

Abs t r ac t In high-level synthesis of VLSI circuits, good lower bound prediction can
efficiently narrow down the large space of possible designs. Previous approaches predict the
lower bound by relaxing or even ignoring the precedence constraints of the data flow graph
(DFG), and result in inaccuracy of the lower bound. The loop folding and conditional branch
were also not considered. In this paper, a new stepwise refinement algorithm is proposed,
which takes consideration of precedence constraints of the DFG to estimate the lower bound
of hardware resources under time constraints. Processing techniques to handle multi-cycle,
chaining, pipelining, as well as loop folding and mutual exclusion among conditional branches
are also incorporated in the algorithm. Experimental results show that the algorithm can
produce a very tight and close to optimal lower bound in reasonable computation time.

Keywords lower bound estimation, chaining, pipeiining, mutual exciusmn, high-ievei
synthesis

1 Introduction

High-level synthesis is the realization of register transfer level (RTL) structure from the system
functional specification. It consists of two major tasks, scheduling and allocation, the former deter-
mines the assignment of operations to control steps while the latter binds operations to hardware
resources. The main difficulty in high-level synthesis is how to select the best design from the large
number of possible designs. Trade-offs on design space exploration and optimization goals become the
crucial problem in high-level synthesis.

In syr.thesis of '.a:ge systems, '~ower bound prediction not only can narrow down the design space by
pruning lots of inferior designs but also enables the synthesis system to explore the large design space
efficiently [i-3]. It is extremely time consuming for the synthesis system to locate directly at several
"good" points in the design space without actually synthesizing all the possible designs. Furthermore,
the accurate lower bound estimation results can be used to evaluate the quality of designs synthesized
by heuristic algorithms.

There were some previous studies on lower bound predictions before actual scheduling. Jain et
a/. [4] formulated a mathemat ica l model for area-delay prediction for high-level synthesis. T immer
e ta / . [5] generated the area-delay curves by relaxing some of the precedence constraints to select the
minimal cost module set. Nourani and Papachristou [6] gave a layout area cost est imation algorithm for
a given RTL da tapa th with standard-cell and full-custom layout methodologies. Execution interval
analysis approach is widely used for scheduling and estimation. Timmer and Jess [r] adopted the
biparti te graph matching algorithm for resource constraints scheduling and est imation while Sharma
and Jaini8} est imated architecture resource and performance by calculating the minimal overlap among
different execution intervals of operations. ~Vehn eta/. (9] obtained the hardware lower bounds with a
simple mobility matr ix calculation. Ohm et a/. [i~ proposed a fanout reduction and a variable merging
approach to refine the lower bound on registers and an integrated approach for lower bound estimation
with an area cost model covering register, buses as well as functional units jill. Hu eta/ . [12] extended
their interval estimation method to functional pipeline. Another popular model in high-level synthesis
is the integer linear programming (ILP) formulation [13-16]. Rim and Jain [17,is] derived the lower
bound using a relaxed ILP formulation and a greedy algorithm. Chaudhur[and ~Valker [i9] gave another

No.6 Lower Bound Estimation of Hardware Resources 719

ILP formulation to compute the lower bound on functional units by considering the interdependence of
the bound on different functional unit (FU) types while Langevin and Cerny[2~ tried to improve Rim
and Jain's relaxation algorithm by adopting a recursive greedy technique to compute the ASAPUC
(as soon as possible under constraint) value. Shen and Jong[21] proposed an integer programming
model with a surrogate relaxation technique for the lower bound and upper bound when scheduling
and multicomponent selection were considered simultaneously. Other models and techniques such
as parameterized component estimation[22], timing and re-timing analysis and estimation [~3'241 and
power consumption estimation[25] have been proposed to aid the high-level synthesis.

The quality of a lower bound prediction depends on the accuracy of the lower bound and the
efficiency of the estimator. The previous approaches estimated the lower bound by relaxing or even
ignoring the precedence constraints of the Data Flow Graph (DFG), thus resulted in inaccuracy of the
lower bound. Neither the loop folding nor conditional branch was considered. In this paper, a stepwise
refinement algorithm is proposed to predict the lower bound on the number of hardware resources
under the time constraints, taking the precedence constraints of the DFG into account. Experimental
results show that the proposed algorithm can provide a very tight lower bound in a reasonable time.
It can also handle multi-cycle, chaining, pipelining, as well as loop folding. A new condition tree
naming and matching algorithm is also proposed to handle the mutual exclusion among conditional
branches.

The rest of the paper is organized as follows. Section 2 describes the estimation algorithm. Section
3 discusses the variations on the active range graph due to the DFG precedence constraints and
presents the stepwise refinement estimation algorithm. Section 4 extends the estimation algorithm to
handle chaining, pipelining and loop folding. A new condition tree naming and matching algorithm for
estimating the architectural resources with mutual exclusion among conditional branches is presented
in Section 5. Experimental results are shown in Section 6 and Section 7 concludes the paper.

2 E s t i m a t i n g t h e L o w e r B o u n d o n t h e A R G r a p h

2.1 De f in i t i ons

The following definitions are used to describe the estimation and stepwise refinement algorithms.
De f in i t i on 1 (A S A P a n d A L A P) . A S A P time of an operation node in the D F G is the earliest

time step in which the node can be executed subject to the precedence constraints of the DFG and the
amount of the available resources.

A L A P time of an operation node is the latest time step in which the operation must be completed
so that all the operations in the DFG can be finished by a given time constraint T.

Let the starting time step of the DFG be 0. The initial ASAP and ALAP time can be obtained
under the assumption, where the amount of available resource is unlimited.

De f in i t i on 2 (A c t i v e r a n g e (A R)) . The active range of an operation node is the time interval
between its A S A P time and A L A P time, denoted by [ASAP, ALAP].

Def in i t i on 3 (A c t i v e r a n g e g r a p h (A R g r a p h)) . The active range graph of an operation type
is the graph that depicts all the active ranges of this type of operations in the DFG.

Fig.1. Differential equation DFG.

T

6

2

0

Fig.2. AR graph of multiplication.

T

6

4

2

o

H I K

Fig.3. AR graph of addition.

Fig.t shows the DFG of the differential equation example from [26]. The active range graphics of

720 Shen Zhaoxuan, Jong Ching Chuen Vol.[7

the mul t ip l ica t ion opera t ions and the add i t i on ope ra t ions are shown in Fig.2 and Fig.3 respect ively.
Here it is assumed tha t the add i t i on ope ra t ion takes one cycle and the mul t ip l i ca t ion ope ra t i on takes
two while the t ime cons t ra in t is 6.

The following no ta t ions are adopted :
If A = {at , a 2 , . . . , a i , . . . , a~} refers to a set, IAI refers to the number of e lements in the set and

ai(1 < i < [A[) refers to one of i ts elements.
Oop refers to the set of all the ope ra t ion nodes of the t ype op in DFG, and TCop is the cycle t ime

of the type op.

A S A P (a i) and A L A P (a i) denote the A S A P and A L A P t ime of the ope ra t i on node ai.
[a, b] is a t ime interval and A n [a, b] is the set of all the nodes ai E A which sat isfy a < A S A P (a i) _<

A L A P (a i) _< b.

2.2 L o w e r B o u n d o n t h e A R G r a p h

The act ive range graph p a r t l y reflexes the precedence re la t ions among the ope ra t ions in the D F G .
It is used to e s t ima te the lower bound of the number of resources for each type of ope ra t ion . The
a lgor i thm is descr ibed as follows.

A l g o r i t h m 1. E s t i m a t i n g Lower Bound of Resources under the T ime Cons t r a in t T

For each operat ion in the DFG Do
{

Calculate its ASAP & ALAP under the assumption that there are unlimited resources and the
ending time of the DFG is T

}
For each operat ion type op Do
{

Sort ASAP time of all the operation nodes of type op in ascending order and put into S
Sort ALAP time of all the operation nodes of type op in ascending order and put into L
L Bov = 0
F o r i = 1To IS[Do
F o r j = 1 To ILl Do
{
If (lj - si > TCop) T h e n / / T C o p is the execution steps of operat ion type op
{
K = Oop ,~ [si, lj] / / Find all operations of type op in [sl, lj]
m = []KI / (l ~ - si)] / / Compute the minimum no. of operations in each step of [si, Ij]
If (m > LBop) Then LBop = m
}
}

}

For mul t i -cycle opera t ions , m = [] K [/ (k (l j - s i) / T C o p J)] ins tead of rn = [[K] / (l j - s i)] .

Table 1 and Table 2 show the processing s teps of e s t ima t ing the lower b o u n d of the resources
for mul t ip l ica t ions and add i t ions in the D F G of the different ial equa t ion example unde r the t ime
cons t ra in t of 6. T h e worst complex i ty of the a lgor i thm is O (n 2) where n is the n u m b e r of nodes in
the DFG.

[sl, lj]
[0, 21
[0, al
[0, 41
[0, 51
[2, 41
i2, 51

, L B . =

Table 1. Estimation of Multiplication
Z~, = lj - - si Operations *

A, B
A , B , C

[K[= # of op T, = [T v / T C J
L2/2J = 1
[312J = 1.

, - -= F IK I /Tq
r 2 / t l = 2
[3 / t] = 3

4 A, B, C, F 4 H/2J = 2 f4/2J = 2
5 A, /3 , C, D, F, G 6 / 5 / 2 / = 2 r6/27 = 3
2 F 1 L2/2J = l h / l l = 1
3 /7, G 2 [3/2J = 1 [2 / 1] = 2

MAX (m) = 3

No.6 Lower Bound Estimation of Hardware Resources 721

[si, lj]
[0, 5]
[0, 6]
[1, 5]
[1, 6]
[2, s]
p.,~]
[4, 5]
[4, 61
[5, ~]

LB+ =

T, = lj - si
5

Table 2. Estimation of Addition
Operations + Igl = # ofop T. -- k T . / ' r c j m = ~IKI/Ts]

E, J L5/1j = 5 [2 /5] = 1
6 E, H, [, J, K 5 L6/1J = 6 [5/6] = 1
4 J 1 [4/1] = 4 [1/4] = 1
5 H , I , J , K 4 Lh/U = 5 [4/5] = 1
3 J t L3/I j = 3 [~/31 --
4 H, J, K 3 L4/1] -- 4 [3/4] = 1

2 J, K 2 L2/1J = 2 1"2/2] = I
z K t LI/ IJ = t Fz/zl = t

MAX (m) = 1

3 S t e p w i s e R e f i n e m e n t E s t i m a t i o n A l g o r i t h m

3.1 V a r i a t i o n s o n t h e A R G r a p h

Taking a further considerat ion of the precedence constraints in the DFG, it is noticed tha t the
est imation Algori thm 1 does not give accurate results. This is because the A S A P time and A L A P time
are calculated under the assumption, where the hardware resources are unlimited. If the es t imated
number of resources is used to re-calculate the A S A P and A L A P time, the active ranges of some
operations are changed. This will lead to a new est imation and will give a t ighter lower bound. The
new lower bound will in tu rn lead to another i terat ion of AR graph variat ion and re-estimation. After
several iterations, the active range graph of the D F G will no longer change and a very accurate lower
bound that satisfies the precedence constraints in the DFG will be obtained.

There are three variations on the A R graph: the range overriding variation, the pa th overriding
variation and the successive paths variation.

(1) Range overriding variation
Having est imated tha t at least 3 multipliers are needed as shown in Table 1, it can be seen from

Fig.2 tha t the operat ions A, B and C must be executed between [0, 2] and the opera t ion D cannot
be executed in [0, 2]. Hence, the active range of D must be cut off [0, 2] and changed to [2, 5]. This is
called range overriding variation or range overriding cutting.

(2) P a t h overriding variat ion
Consider the example of the D FG in Fig.4, with the AR graph shown in Fig.5 and a time constra int

of 5, if it is es t imated that only one adder is needed, the earliest t ime step for opera t ion D is 4 because
it takes at least 4 steps to complete all of its predecessors. So the active range of D must be cut off
the frame [3, 4] and changed to [4, 5]. This is the pa th overriding variat ion or pa th overriding cut t ing.

(3) Successive paths variation
After the range overriding variation and pa th overriding variation, all the active ranges of the

operations in the successive paths need to be modified accordingly. For the differential equat ion
example, as the active range of opera t ion D has been cut off the frame [0, 2] and changed to [2, 5] due
to the range overriding, the active range of successive operat ion H must be cut off the frame [2, 4]
and changed to [4, 6] accordingly. This is the successive paths variation or successive paths cut t ing.

B
3

C " D ~ E t

Fig.4. A DFG example.

T~
D 5

Fig.5. AR graph of Fig.4.

D

I1211111111111111-CI-/11--L-_ --I--_/

Fig.6. AR graph after variation.

Corresponding to the ASAP and A L A P calculation, each variation has two kinds of cutt ing: the
lower frame cu t t ing (due to the A S A P time overriding) and the upper frame cut t ing (due to the A L A P
time overriding). The est imated number of resources is used to perform the above three variations

722 Shen Zhaoxuan, Jong Ching Chuen Vol.17

on the ASAP and the ALAP time. In the example of Fig.5, with the estimated one adder for the
DFG, it needs to modify the ASAP time of D to 4 and cut off the lower frame [3, 4] from its active
range due to the path overriding. Similarly, due to the path overriding, the ALAP time of B must be
changed to 2 and its upper frame [2, 3] must be cut off from its active range because it takes at least
3 steps to finish all of its descendants. The upper frame cutting of B will in turn result in the upper
frame cutting of operation A due to the successive paths propagation and the ALAP time of A must
be changed to 1. The last feasible AR graph for the DFG of Fig.4 is depicted in Fig.6. The stepwise
refinement estimation algorithm based on the variations on the AR graph is given in the following
section.

3.2 Stepwise Refinement Est imat ion Algori thm on the Lower Bound of R e s o u r c e s

A l g o r i t h m 2. Stepwise Refinement Lower Bound Estimation under Time Constraint T

Sort operation types by their costs in descending order and put into the set OP
For i=l To lOP] Do

{
Call Algorithm 1 to estimate the number of resource LBi for opi
Repeat
Save the current AR graph of op~
While there is ASAP range or path overriding under current (LBd} (1 < j ~_ i) Do
{

Do the lower frame cutting
Propagate the variation to the successive paths

}
While there is ALAP range or path overriding under current {LBj} (1 < j < i) Do
{

Do the upper frame cutting
Propagate the variation to the successive paths

}
For j = I To i Do
{

Call Algorithm 1 to re-estimate the number of resource NewLBj for opj
}
changed = False
If (NewLBi > LBi) Then {LB; + +; changed = XYue; }
Else {

F o r j = l T o i D o
{
If (NewnB~ > LBj) Then {LBi + +; changed = True; Break;}
}

}
If (changed) Then Restore the saved old AR graph of opi

Until (Not changed)

4 Lower B o u n d on Chaining, P ipe l in ing and Loop Folding

4.1 Lower Bound with Chaining Operations

The algorithm can be extended to process chaining operations. In operation chaining, more than
one operations are scheduled one control step, i.e., the operations are chained. Fig.7 shows a DFG
where a multiplication (,) requires 80ns and an addition (+) takes 35ns. The cycle time is assumed
to be 80ns. By chaining two additions into one cycle as shown in Fig.8, the DFG can be scheduled in
one C-step, which is faster than the regular schedule shown in Fig.7, where two C-steps are required.

The estimation algorithm for chaining operations only requires a small modification in Algorithm
A: change the ASAP, ALAP and TCop from the unit of C-step to the unit of actual clock period.

No.6 Lower Bound Est imation of tIardware Resources 723

....... ' i :,

. ,

Fig.7. Regular schedule.

.),

80ns

.

Fig.8. Chaining.

4 .2 L o w e r B o u n d w i t h P i p e l i n e d R e s o u r c e s

In con t ras t to ope ra t i on chaining, ope ra t i ons can be p ipe l ined and scheduled to more t h a n one con-

. I * } 4"

.

iiiiiiii! iiiiiiiiiiiii
Fig.9. Schedule of differential equation
with pipelined multiplier.

t ro l s teps. P ipe l ined ope ra t ions have to be execu ted by
p ipe l ined funct ion units , which execute ope ra t i ons in mul t i -
s tages. The p rob lem of schedul ing ope ra t ions to p ipe l ined
resources is based on the fact for which once a s tage of a
p ipe l ined funct ional uni t is empty, it is avai lable for o ther
opera t ions . F ig .9 is a schedule of the Different ial E q u a t i o n
wi th a 2-s tage p ipe l ined mul t ip l ier , h i the example , two
independen t mul t ip l i ca t ions can be scheduled into two con-
secut ive C-s teps (e.g., D and A) because they are execu ted
a t the different s tages of the p ipe l ined mul t ip l ie r .

To ob t a in the lower b o u n d wi th p ipe l ined resources, first
i t needs to e s t i m a t e the number of p ipe l ined resources t h a t
can be p ipe l ined for the full s tage of the t ime interval . Then
the r ema in ing opera t ions are used to e s t ima te the number
of non-p ipe l ined resources. T h e a lgor i th m is descr ibed as
follows.

A l g o r i t h m 3. Es t ima t ing Lower Bound wi th P ipe l ined Resources

For each operation in the DFG Do
{

Calculate its ASAP and ALAP under the assumption that there are unlimited resources and the
ending time of the DFG is T

}
For each operation type op Do
{

Sort ASAP time of all the operation nodes of type op in ascending order and put into S
Sort ALAP time of all the operation nodes of type op in ascending order and put into L

LBPop = LBNPop = 0
F o r i = l T o ISI Do
F o r j = l T o I L I D o
{
If (lj - s i > TCop) Then
{

K = Oop N [si,lj] / / Find all operations of type op in [si,lj]
x = M A X _ M A C H I N E _ N U M B E R
For b = si To lj Do / / F i n d minimum pipelined resources needed in [s~, lj]

x = Min(IK n [b,b+ TCop]],x)
s tage= lj - si - 1;
If (s tage+l > TCo.) Then y = LlKI/stageJ
Else y = 0 / / Calculate resources needed if all operations are pipelined
mpipe : Min (x, y) / / Obtain the pipelined resources needed
leftop = IKI - mpipe* stage / / Calculate she number of operations left
-~ p,,r = F t 4 t o T , / ([(t j - - ~ ,) / r c o , , J)] / / G e t the number of non-pipelined resources

724 Shen Zhaoxuan, Jong Ching Chuen Vol.17

If (Cost(mp~pe, mno,p~pe) > Cost(LBPop, LBNPop)) Then
{/ / Accept the estimated resource number with the minimum cost

LBPoI, = mpipe
LBNPop = rnnonpipe

}
}

}

4.3 L o w e r B o u n d w i t h L o o p F o l d i n g

Apar t from processing chaining operat ions and pipelined resources, the a lgor i thm can also be
extended to estimate the lower bound of resources with loop folding. Loop folding [2T-~~ is widely
used to exploit the concurrency beyond the i teration boundaries. It adopts the pipeline technique to
parallel different i terations of the loop.

The following definitions are used:
I terat ion Time (IT) is the number of C-steps, which are needed for the complet ion of an iteration.
Init iat ion Interval (II) is the number of C-steps between the start of two successive pipelined

iterations.
Loop Carried Dependency (LCD) is the precedence dependency among operat ions across different

iterations.
The est imation algori thm for loop folding is as follows: first if there e.xists a loop carried dependency

(LCD), the minimal la tency (i.e., initiation interval II) of the pipeline is determined. Then multiple
active ranges that can be executed simultaneously in the pipeline are used to est imate the lower bound
of the resources. The algori thm is described as follows.

A l g o r i t h m 4. Es t imat ing Lower Bound for Loop Folding under I terat ion Time Constra int IT

For each operation in the DFG Do
{

Calculate its ASAP and ALAP under the assumption whene there are unlimited resources and the
ending time of the DFG is T

}
I [= O
For each pair of operation nodes n,, n i which have LCD between them Do

I f = Max (I I , abs(asap(n~) - asap(nj)) + 1) / / Find the minimum iteration interval
For each operation type op Do
{

Sort ASAP time of all the operation nodes of type op in ascending order and put into S
Sort ALAP time of all the operation nodes of type op in ascending order and put into L
LBop -= 0
F o r i = 1ToIS [Do

F o r j = l To [L[Do
{
If (lj - s~ > TCop) Then
{

K = 0
For k = 0 To LIT~Hi Do
{ / / Calculate all the intervals that can execute at the same time due to loop folding

s ---- rood (si + k * I[, IT)
l = rood (lj + k * H, IT)
g = K u (0o,, n is,, l j])

}
m = rlKI/([(l j - s,)/TVopJ)] / /Ca lcu la t e the minimum resources needed
If (m > LBop) Then LBop = m

}
}

No.6 Lower Bound Estimation of Hardware Resources 725

5 C o n d i t i o n Tree N a m i n g a nd M a t c h i n g for E s t i m a t i o n w i t h M u t u a l Ex-
clusion

'vVakabayashi and Tanaka [31] proposed a one-hot encoded vector to process the mutual exclusion
between different conditional branches. A hot-bit is assigned to every conditional branch and the
hot-bit of un-overlaped conditions cannot be re-used. This will lead to a very exhaustive vector if
there exist a large number of conditional statements.

Here a new condition tree naming and matching approach is proposed to process the mutual
exclusion between different conditional branches. First a unique identification is assigned to each
condition node and each condition branch is named with a branch name, which consists of the unique
identification of the condition node followed by a condition status bit. Then each operation node
is named with a condition path name, which is made up of a series of branch names indicating the
path traversing along the condition tree from the root to the node. Each operation node name can
have different length and an operation node name matching algorithm is developed to check whether
two operation nodes are mutually exclusive. A clique partitioning algorithm is adopted to detect the
groups of nodes which are mutually exclusive among each other in the group. Each of these groups
is viewed as a single operation node during the estimation. The method is described in the following
sections.

5.1 C o n d i t i o n Tree N a m i n g

(1) Condition node naming
Assign a unique identification (UI) to each condition node. Fi is assigned to a fork node and Ji is

assigned to a join node.
(2) Condition branch naming
Each branch following a condition fork node is named as UI-SB, i.e., the UI of the fork node

followed by a condition status bit (SB).
For 'If ~ Then ~ Else' condition, SB = 0 refers to the false branch and SB = 1 refers to the true

branch.
For 'Case' condition, SB = 0 ~ 9 refers to each branch of the 'Case' condition. If there are more

than 10 branches, multipIe nested 'Case' conditions can be used.
(3) Operation node naming
Each operation node is named with a branch name series { U I - S B } * , indicating a path from the

root condition node to the node.
If an operation node is not within any conditional branch, it is named as X.
(4) Simplifying operation node name
From the end to the beginning of the operation node name, if a Ji is found, then the string between

Fi to Ji (including Fi and Ji) is eliminated from the operation node name.

5.2 M u t u a l E x c l u s i o n D e t e c t i o n

(1) Checking mutual exclusion between two operation nodes
Let ~NameP be the pointer to a name string.
GetNextUIOf (Name, i"NameP) returns a UI in the Name to which tNameP currently points and

then moves i"NameP to the position behind the UI.
GetNextSBOf(Name, l"NameP) returns an SB in the Name to which ~NameP currently points

and then moves 1"NameP to the position behind the SB.
The mutual exclusion detection algorithm is shown as follows.

Stop = False
While (Not Stop) Do
{

Strl = GetNextUIOf(Namel, l"NameP 1)
Str2 = GetNextUIOf(Name2, j'NameP2)
If (Strl = = NULL or Str2 = = NULL) Then Stop = True

726 Shen Zhaoxuan, Jong Ching Chuen Voi.17

If (S t r l ~ Str2) Then Return No
Str l = GetNextSBOf(Namel, j'..NameP 1)
Str2 = GetNextSBOf(Name2, SNameP2)
If (Str l = = NULL or Str2 ---- NULL) Then Stop = True
If (Strl ~ Str2) Then Return Yes

}
Return No

(2) Detect ing the m a x i m u m m u t u a l exclusion ope ra t ion node group
An undi rec ted g raph is i n t roduced in which the node refers to the ope ra t i on node and the con-

nect ion between two nodes indica tes the two ope ra t i on nodes are mutua l ly exclusive. We adop t the
cl ique pa r t i t ion ing a lgor i thm descr ibed in [32] to de tec t the m a x i m u m mutua l exclusion ope ra t ion
node group.

5 .3 E s t i m a t i n g L o w e r B o u n d w i t h M u t u a l E x c l u s i o n

A l g o r i t h m 5. E s t i m a t i n g Lower Bound wi th M u t u a l Exclusion under T ime Cons t r a in t T

For each condition node in the DFG Do
(

assign a unique name
assign a branch name to each of its branch

}
For each operation node in the DFG Do
{

get its node name and make correspondent simplification
}
For each operation node in the DFG Do
{

Calculate its ASAP and ALAP under the assumption where there are unlimited resources and the
ending

time of the DFG is T
}
For each operation type op Do
{

Sort ASAP time of all the operation nodes of type op in ascending order and put into S
Sort ALAP time o[all the operation nodes of type op in ascending order and put into L

LBop = 0
F o r i = 1 To ISI Do
For j - - 1 To ILl Do

{
If (l j - si > TCop) Then
(

K = Oop • [s~, lj]
/ / Find maximum mutual exclusive operation node groups
F -- number of maximum mutual exclusive operation node groups in K
/ / A s all the mutual exclusive operations can share the resources, these operations
/ / c a n be t reated as only one operation. It needs to deduct them from the number of
/ / o p e r a t i o n s in the interval:
rn = [(I K ' - 'FI) / ('L(I i - s i) / T C o p j)]

If (m > LBop) Then LBop = m
}
}

6 E x p e r i m e n t s a n d R e s u l t s

The lower b o u n d e s t ima t ion a lgor i thms were implemented on a SUN works ta t ion in C language.

No.6 Lower Bound Estimation of Hardware Resources 727

Several benchmarks were tested and the results were compared to some previously publ i shed results.

6.1 C o m p a r i s o n o f t h e L o w e r B o u n d s w i t h P r e v i o u s R e s u l t s

The first example depicted in Table 3 is the benchmark of AR lat t ice filter taken from [4]. It has
16 mult ipl icat ions and 12 addit ions. It was assumed tha t each mul t ip l ica t ion needs two C-steps while
each addi t ion needs one. It can be seen from the table tha t at T = 12 ~ 13, the lower b o u n d (4. , 2+)
ob ta ined is t ighter t h a n Ja in ' s (3. , 1+) at T = 12 [41 and Sharma and Rim 's (3. , 2+) at T = 13 [s'ls].

The lower bound (3*, 1+) at T = 15 ~ 17 was also t ighter t han (2. , 1+) at T = 16 produced by Jain.

Table 3. Comparison of Lower Bounds on AR Filter

T

§

Jain's estimation Sharma and Rim's estimation Our estimation
11 12 16 32 11 13 14 18 34 11-13 14 15-17 18-33 34
4 3 2 1 4 3 3 2 1 4 3 3 2 1
2 1 1 1 2 2 1 1 1 2 1 1 1 1

The second example shown in Table 4 is the benchmark of fifth-order el l iptical wave (EW) filter,
which contains 26 addi t ions and 8 mult ipl icat ions. It was also assumed tha t a mul t ip l ica t ion needs two
C-steps while an addi t ion needs one. The table shows tha t a be t t e r result of (1 . , 2+) at T -- 21 ~ 27
was obta ined as compared to the results from Ja in [4] and Sharma[s] and Rim[lsl, who had (1. , 1+) at
T = 26 and T = 27. In addit ion, at T = 19 ~ 20, (2. , 2+) was ob ta ined while the results were not
available in Jain, Sharma and Rim's reports.

Table 4. Comparison of Lower Bounds on EW Filter
Jain's estimation Sharma and Rim's estimation Our estimation

T 17 26 17 18 21 27 17 18-20 21-27 28
* 3 1 3 2 1 1 3 2 1 1

+ 3 1 3 2 2 1 3 2 2 1

6.2 C o m p a r i s o n o f t h e E s t i m a t i o n w i t h A c t u a l S c h e d u l e R e s u l t s

Table 5 shows the lower bound on the differential equat ion, which has been discussed in the previous
sections. The es t imat ion results obta ined are compared with those of Jain, S h a r m a and Rim and also
the actual schedule ob ta ined by a Precedence-Bipar t i te scheduler developed. It can be seen tha t all
the lower bounds ob ta ined for this example are the opt imal results because they are the same as the
actual schedule generated by our scheduler. It is also noted tha t the lower b o u n d (4. , 1+) at T = 6
ob ta ined by Jain , Sharma and Rim is not pract ical because they use a more cost ly mul t ip l ie r ins tead
of an adder.

Table 5. Comparison of Estimation with Actual Schedule on Differential Equation
Jain's estimation Sharma and Rim's estimation Our estimation Our actual schedule

T 6 12 6 7 13 6 7 8-12 13 6 7 8 13
* 4 i 4 2 1 3 2 2 1 3 2 2 1
+ 1 1 1 2 1 2 2 1 1 2 2 1 1

Table 6 compares the lower bounds for the example of E W filter with the ac tua l schedule ob-
ta ined by our scheduler and Pau l in ' s HAL system [26]. A mult ipl ier (d e l a y - 80ns) needs one cycle
(delay = 80ns) while two addit ions (delay = 35ns) were chained into one cycle. All the lower bounds
ob ta ined are the same as the actual schedule.

Table 6. Comparison of Estimation with Schedule on EW Filter with Operation Chaining
Delay
680ns
720ns
760ns
840ns
ll20ns

*: Multiplier

HAL's schedule [261 Our schedule Our estimation
3* 3+ 3* 3+ 3* 3+
2* 3+ 2* 2+ 2* 2+
2* 2+ 2* 2+ 2* 2+
1. 2-t- 1. 2+ 1. 2+

NA 1- l+ 1. 1+
(delay = 80ns), +: Adder (delay= 35ns), Cycle (delay= 80ns)

In fact, the lower bounds obta ined here for bo th the E W filter and the differential equat ion are
the opt imal onesI33].

728 Shen Zhaoxuan, Jong Ching Chuen Vol.17

6.3 L o w e r B o u n d w i t h P i p e l i n e d R e s o u r c e s

Table 7 shows the lower bound of the differential equat ion with pipel ined resources. It can be seen
that the lower bound obta ined is be t te r at T = 6 because a non-pipel ined mul t ip l ier is used ins tead
of a more expensive pipel ined multiplier . Besides, a lower bound at T = 5 was ob ta ined while there
was no result reported by Jain, Sharma and Rim.

Table 7. Lower Bounds on Differential Equation with Pipelined Multipliers
Jain's estimation

T 6
*p 2
* 0
+ 1

Sharma and Rim's estimation
6 8
2 1
0 0
1 1

Our estimation
5 6 8
2 i i
2 1 0
i 1 i

6.4 L o w e r B o u n d o n L o o p F o l d i n g

Table 8 is the benchmark of 16-point F I R filter [34], which has no Loop Carried Dependency (LCD).
Several Ini t ia l Interval (II) values were used. All the lower bounds obta ined under the different
I tera t ion Time (IT) and Ini t ia l In terval (II) are the same as the ac tua l schedules genera ted by the
"Theda.fold" system [27] and are proved to be optimal [2s].

Table 8. Lower Bounds of 16-Point FIR Filter with Loop Folding
IT II Our estimation
6 1 154- 8*
6 2 84- 4*
6 3 5+ 3*
6 4 44- 2*
7 5 34- 2*
10 8 24- 1.
16 15 14- I*

Theda. Fold's schedule [271
154- 8*
8+ 4*
54- 3*
4+ 2*
3+ 2*
2+ 1.
1+ i*

6.5 L o w e r B o u n d o n C o n d i t i o n a l B r a n c h

For the condi t ional branch, the condi t ional tree naming and matching a lgor i thm presented in
Section 5 is to find the mu tua l exclusion between condi t ional branches. Table 9 shows the lower
bounds on some famous benchmarks tha t contain condi t ional branches. From the table, it can be
seen tha t the lower bounds obta ined are the same as the actual schedule generated and they are the
optimal .

Table 9. Lower Bounds on Conditional Branch
Examples T Our estimation Our schedule Difference
MAHA ~351 6 1+ i - 1+ i - 0

Sehwa[341 5 1+ 2 - 1+ 2 - 0
6 1+ 1- 1+ i - 0

Kim[361 7 2+ i - 2+ I - 0
8 1+ 1- 1+ 1- 0

Our C P U t ime for ob ta in ing the lower bound is also very short and ranged from 10-50ms, compared
to tha t of Jain, Rim and Sharma, for 20ms, 40ms and 500ms, respectively.

In summary, the lower bounds, which we produce for different benchmarks, are e i ther as good as
or be t t e r t han those produced by the previous es t imat ing systems. They are also close to the ac tua l
schedules and hence close to opt imal ones.

7 C o n c l u s i o n

As the lower bound estimation of hardware resources is useful and important to high-level synthesis

systems and it allows the synthesis system to explore a large design space without having to implement

the final designs, it is crucial that the estimation gives tight and accurate results. In this paper, a

No.6 Lower Bound Es t imat ion of Hardware Resources 729

new stepwise refinement method is proposed. It takes into consideration of precedence constraints
of the DFG to predict the lower bound on the nmnber of resources under time constraints. The
algorithm includes the capability to handle multi-cycle, chaining, pipelining, loop folding and the
mutual exclusion of conditional branches. Experimental results obtained on testing several benchmarks
show that tile lower bounds produced are very tight and close to optimal while the CPU time required
for the estimation is very short.

References

[1] Hu Y, Carlson B S. A unified algorithm for the estimation and scheduling of data flow graphs. Journal of Circuits
Systems and Computers, June~ 1996, 6(3): 287-318.

[2] Tiruvuri G, Chung M. Estimation of lower bounds in scheduling algorithms for high-level synthesis. ACM Trans.
Design Automation of Electronic Systems, Apr., 1998, 3(2): 162-180.

[3] Narasimhan M, Ramannjam J. On lower bounds for scheduling problems in high-level synthesis. In Proc. 2000
Design Automation Conference, Los Angeles, CA, USA, June, 2000, pp.546-551.

[4] Jain R, Parker A C, Park N. Predicting system-level area and delay for pipelined and non-pipelined designs. IEEE
Trans. CAD-ICAS, 1992, 11(8): 955-965.

[5] Timmer A It, Heijligers M J M, Jess J A C. Fast system-level area-delay curve prediction. In Proc. 1st Asian
Pacific Conference on Hardware Description Languages, Standards and Applications, Brisbane, Australia, Dec.,
1993, pp.198-207.

[6] Nourani M, Papachristou C. A layout estimation algorithm for RTL datapaths. In Proc. 30th Design Automation
Conference, Dallas, TX, USA, 1993, pp.285-291.

[7] Timmer A H, Jess J A G. Execution interval analysis under resource constraints. In Proc. International Conference
on Computer Aided Design, Santa Clara, CA, USA, Nov., 1993, pp.454--459.

[8] Sharma A, Jain R. Estimating architectural resources and performance for high-level synthesis applications. In
Proc. 30th Design Automation Conference, Dallas, TX, USA, 1993, pp.355-360.

[9] Wehn N, Glesner M, Vielhauer C. Estimating lower bounds in high-level synthesis. In IFIP Trans. VLSI 93: Proc.
IF[P TCIO//WGIO.5 Int. Conf. VLSI, Grenoble, France, Sept., 1993, pp.261-270.

[10] Ohm S Y, Kurdahi F J, Dutt N. Comprehensive lower bound estimation from behavioral descriptions. In Proc.
International Conference on Computer Aided Design, San Jose, CA, USA, Nov., 1994, pp.182-187.

[11] Ohm S Y, Kurdahi F J, Dutt N D. A unified lower bound estimation technique for high-level synthesis. IEEE
Trans. CAD-ICAS, May, 1997, 16(5): 458-472.

[12] Hu Y, Ghouse A, Carlson B S. Lower bounds on the iteration time and the number of resources for functional
pipelined data flow graphs. In Proc. International Conference on Computer Design, Cambridge, MA, USA, Oct.,
1993, pp.21-24.

[13] Hwang C T, Lee J H, Hsu Y C. A formal approach to the scheduling problem in high level synthesis. IEEE Trans.
CAD-ICAS, 1991, 10(4): 464-475.

[14] Gebotys C H, Elmasry M I. Global optimization approach for architectural synthesis. IEEE Trans. CAD-ICAS,
Sept., 1993, 12(9): 1266-1278.

[151 Hwang C T, Hsu Y C. Zone scheduling. IEEE Trans. CAD-ICAS, Jul., 1993, 12(7): 926-934.
[16] Wilson T C, Grewal G "~V, Banerji D K. An ILP solution for simultaneous scheduling, allocation, and binding in

multiple block synthesis. In Proc. International Conference on Computer Design, Cambridge, MA, USA, 1994,
pp.581-586.

(17] Rim M, Jain R. Estimating lower-bound performance of schedules using a relaxation technique. In Proc. Interna-
tional Conference on Computer Design, Cambridge, MA, USA, 1992, pp.290-294.

[18] Rim M, Jain R. Lower-bound performance estimation for the high-level synthesis scheduling problem. IEEE Trans.
CAD-ICAS, Apr., 1994, 13(4): 451-458.

[19] Chaudhuri S, Walker R A. Computing lower bounds on functional units before scheduling. In Proc. 7th International
Symposium on High-Level Synthesis, Ontario, Canada, May, 1994, pp.36--41.

[20] Langevin M, Cerny E. A recursive technique for computing lower-bound performance of schedules. In Proc. Inter-
national Conference on Computer Design~ Cambridge, MA, USA, 1993, pp.16-20.

[21] Shen Z X, Jong C C. Functional area lower bound and upper bound on multicomponent selection for interval
scheduling. IEEE Trans. CAD-ICAS, July, 2000, 19(7): 745--759.

[22] Jha P K, Dutt N D. Rapid estimation for parameterized components in high-level synthesis. IEEE Trans. VLSI
systems, Sept., 1993, 1(3): 296-303.

[23] Mintz D, Dangelo C. Timing estimation for behavioral descriptions. In Proc. 7th International Symposium on
High-Level Synthesis, Ontario, Canada, May, 1994, pp.42-47.

[24] Rabaey J M, Potkonjak M. Estimating implementation bounds for real time DSP application specific circuits. IEEE
Trans. CAD-ICAS, June, 1994, 13(6): 669-683.

[25] Kruse L, Schmidt E, Jochens G, Stammermann A, Nebel W. Lower bound estimation for low power high-level
synthesis. In Proc. 13th Int. Symposium on System Synthesis, Madrid, Spain, 2000, pp.180-185.

[26] Paulin P G, Knight J P. Force-directed scheduling for the behavioral synthesis of ASIC's. IEEE Trans. CAD-ICAS,
June, 1989, 8(6): 66i-679.

730 Shen Zhaoxuan, Jong Ching Chuen VoI.17

[27] Lee T F, Wu A C H, Lin Y L, Gajski D D. A transformation-based method for loop folding. IEEE Trans. CAD-
ICAS, Apr., 1994, 13(4): 439-450.

[28] Lee T F, Wu A C H, Gajski D D, Lin Y L. An effective methodology for functional pipelining. In Proc. International
Conference on Computer Aided Design, Santa Clara, CA, USA, 1992, pp.230-233.

[29] Hwang C T, Hsu Y C, Lin Y L. PLS: A scheduler for pipeline synthesis. IEEE Trans. CAD-ICAS, Sept., 1993,
12(9): 1279-1286.

[30] Passos N L, Sha E H M, Bass S C. Loop pipelining for scheduling multi-dimensional systems via rotation. In Proc.
31st Design Automation Conference, San Diego, CA, USA, 1994, pp.485-490.

[311 Wakabayashi K, Tanaka H. Global scheduling independent of control dependencies based on condition vectors. In
Proc. 29th Design Automation Conference, Anaheim, CA, USA, 1992, pp.ll2-115.

[321 Springer D L, Thomas D E. Exploiting the special structure of conflict and compatibility graphs in high-level
synthesis. IEEE Trans. CAD-ICAS, July, 1994, 13(7): 843-856.

[33] Tlmmer A H, Heijligers J M, Stok L, Jess J A G. Module selection and scheduling using unrestricted libraries. In
Proc. of the European Conference on Design Automation with the European Event in A S I C Design, Paris, France,
Feb., 1993, pp.547-551.

[34] Park N, Parker A C. Sehwa, a software package for synthesis of pipelines from behavioral specifications. IEEE
Trans. CAD-ICAS, Mar., 1988, 7(3): 356-370.

[35] Parker A C, Pizarro J T, Milnar M. MAHA: A program for datapath synthesis. In Proc. 23rd Design Automation
Conference, Las Vegas, NV, USA, 1986, pp.461-466.

[36] Kim T K, Yonezawa N, Liu W S J, Liu C L. A scheduling algorithm for conditional resource Sharing - - A hierarchical
reduction approach. IEEE Trans. CAD-ICAS, Apr., 1994, 13(4): 425--438.

Shen Z h a o x u a n received the B.Sc. degree in computer science from Zhejiang University, China and
the M.Eng. degree in electrical and electronic engineering from Nanyang Technological University, Singapore.
From August 1987 to January 1994, he was a research associate at Laboratory of CAD & Graphics, Institute
of Computing Technologies, Chinese Academy of Sciences, Beijing, China. During 1996-1999, he was a senior
engineer at Insti tute of High Performance Computing Singapore, developing parallel optimization algorithm
for VLSI fioorplanning, placement and synthesis, etc. He was a senior software engineer at Arcadia Design
Systems, Inc. San Jose, CA, USA from March. 1999 to November 2000 and a senior engineer at Synopsys Inc.
Mountain View, CA, USA from December 2000 to January 2002. He is now with Cadence Design Systems
Inc. San Jose, CA, USA, developing new generation of P&:R tools for SOC VLSI design. Dr. Shen received
the 1991 First Class Science &: Technology Progressing Award from Chinese Academy of Sciences for the
contribution to the EDCADS tool development. He has been an IEEE member since 1996.

J o n g C h i n g C h u e n received the BSc (Eng) degree in electronics with computer science and the PhD
degree in electronic engineering from Queen Mary College, University of London, U.K., in 1983 and 1988
respectively. From July 1987 to October 1990, he worked in the area of high-level synthesis of digital systems
first in University of Southampton, U.K. and then in Racal Research Limited, U.K. In 1991, he joined the
Nanyang Technological University, Singapore, as a faculty member. He is now an associate professor in the
Division of Circuits and Systems, School of Electrical and Electronic Engineering. Dr. Jong is a chartered
engineer, a member of IEE and a member of BCS. His technical interests include high-level synthesis, ASIC
design and fast-prototyping of digital designs.

