COMPOUNDS WITH POTENTIAL ANTITUBERCULOSIS ACTIVITY XV. DERIVATIVES OF SOME S-HETERYLMERCAPTOACETIC ACIDS

UDC 615.281.221.1.011.5

T. P. Sycheva, T. N. Pavlova, T. N. Zykova, and M. N. Shchukina

Since compounds possessing significant tuberculostatic activity have been found amongst thioamides [1, 2], and also amongst amidoximes [3], it was of interest to synthesize a series of nitriles of mercaptoacetic acids containing a heterocyclic residue as a substituent on the mercapto group, with the aim of subsequently converting them into the corresponding thioamides and amidoximes.

TABLE 1. Results of the Examination of Compounds I-IV for Tuberculostatic Activity

	Minimum tuber culostatic concen- tration (in μ g/ml)							
Com- pound	Acad str	emia ain	H ₃₇ Rv strain					
	Soton medium							
	without serum	with serum	without serum	with serum				
Ia	64	125	32	64				
IIa	-	-	64	1000				
IIIa	> 1000	>1000	250	1000				
IVa	-	-	16	250				
Ib	2	64	1	32				
IIb	2	125	2	125				
IIIb	> 1000	>1000	8	1000				
IVb	8	1000	2	500				
IIc	-	-	32	250				
IIIc	- 1	-	>32	>500				

2-Mercaptobenzoxazole (I), 2-mercaptobenzthiazole (II), and 3-mercapto-symm.-triazole(3,4-c)benzthiazole (III) [4] were chosen as starting compounds. Since the presence of an alkoxy group in the molecule often promotes an increase in the tuberculostatic activity, analogous conversions were carried out with 6-ethoxy-2-mercaptobenzoxazole (IV) [5]. Compounds I-IV were reacted with chloracetonitrile; the reaction proceeded smoothly and the nitriles Ia-IVa were obtained in good yield. By reacting them with hydrogen sulfide in the presence of triethylamine, the nitriles were converted into the thioamides Ib-IVb; compound IIIb was obtained in the highest yield in this reaction.

The amidoximes IIc and IIIc were prepared from the compounds IIa and IIIa; the interaction of the nitrile Ia with hydroxylamine yielded a mixture of compounds difficult to separate.

All the compounds were examined for bacteriostatic activity in relation to two strains of bacteria of the human tuberculosis type (Academia – surface growth and $H_{37}Rv$ – deep growth). The greatest tuberculostatic activity was shown by the thioamide Ib (minimum tuberculostatic concentration without serum 1 $\mu g/ml$, with serum – 32 $\mu g/ml$) and by IIb (2 $\mu g/ml$ without serum and 125 $\mu g/ml$ with serum). However, for experimental tuberculosis of white mice, these compounds did not show medicinal properties.

The nitriles Ia-IVa and the amidoximes IIc and IIIc showed weak activity in vitro (Table 1).

S. Ordzhonkidze All-Union Pharmaceutical Chemistry Scientific-Research Institute, Moscow. Translated from Khimiko-Farmatsevticheskie Zhurnal, No. 8, pp. 18-21, August, 1969. Original article submitted March 12, 1969.

Compound Viald (in 9/A	(in %)	mp (in °C) solvent for crystalliza- tion	Found (in %)				Empirical	Calculated (in%)			
	Yield		с	н	N	s	formula	с	н	N	s
la	91,6	95—7, bexane	56,86	3,20	14,79	17,00	C ₉ H ₆ N₂OS	56,82	3,18	14,73	16,86
IIa	94,6	76–9. methanol	52,17	3,07	13,48	31,31	$C_9H_6N_2S_2$	52,40	2,93	13,58	31,09
IIIa	89	1679, ethanol	48,45	2,43	22,20	25,68	$\mathrm{C_{10}H_6N_4S_2}$	48,76	2,45	22,75	26,03
IVa	88,5	85-7,	56,73	4,29		13,84	$C_{11}H_{10}N_2O_2S$	56,39	4,30		13,69
		methanol									

TABLE 2. Nitriles of S-(Heteryl)mercaptoacetic Acid, R-SCH₂CN

TABLE 3. Thioamides of S-(Heteryl)mercaptoacetic Acid, RSCH₂C \sum_{NH}^{S}

Compound Yield (in %)	(in %)	mp (in °C) solvent for crystalliza- tion	Found (in %)				Empirical	Calculated (in %)			
	Yield		с	н	N	s	formula	с	н	N	S
ļþ	49,1	1313, aqueous methanol	48,29	3,40	12,59	28,32	$C_9H_8N_2O_2S$	48,19	3,59	12,49	28,59
IIb	64,1	137,5— 138,5, methanol	44,67	3,70	11,82	40,42	$C_{\mathfrak{g}}H_8N_2S_{\boldsymbol{3}}$	44,97	3,35	11,65	40,02
Шb	91,9	166—8, butanoi	42,92	2,71	19,81	34,48	$\mathrm{C_{10}H_8N_4S_3}$	42,84	2,87	19 ,9 8	34,31
IVb	67,2	132—3, ethanol	49,39	4,29	10,36	23,97	$C_{11}H_{12}N_2O_2S_2$	49,23	4,50	10,44	23,90

EXPERIMENTAL

Nitrile of S-(benzoxazolyl-2)-mercaptoacetic Acid (Ia). A solution of 6.8 g of 2-mercaptobenzoxazole (I) in 119 ml of 5% Na₂CO₃ solution was treated with charcoal, then 3.2 ml of chloracetonitrile was added continuously while cooling with iced water. The reaction mixture was agitated for several hours at room temperature and left overnight. The precipitate formed was filtered off and washed with water; yield of Ia was 7.88 g, mp 95-97°C (from hexane). Compounds IIa-IVa were prepared by an analogous method (Table 2).

Thioamide of S- (benzoxazolyl-2)-mercaptoacetic Acid (Ib). To a solution of 1.05 g of Ia in 15 ml of anhydrous ethanol was added two ml of triethylamine, and a stream of dry hydrogen sulfide was passed through the mixture for 2 h. The reaction mixture was cooled with an ice mixture, the precipitate was filtered off, and washed with chilled ethanol. Yield of Ib, as colorless crystals with mp 131-133°C (from aqueous methanol), was 0.61 g. The thioamides IIb-IVb were prepared by an analogous method (Table 3).

<u>Amidoxime of S-(benzthiazolyl-2)-mercaptoacetic Acid (IIc).</u> A solution of 0.32 g of hydroxylamine hydrochloride and 0.24 g of Na₂CO₃ in 5 ml of water was added to a warm solution of 0.72 g of IIa in 15 ml of ethanol. The yellow solution formed was boiled for 3 h, then evaporated to $\frac{1}{3}$ its volume, and water was added. The precipitate was filtered off. Yield of IIb, with mp 129.5-131.5°C (from water), was 0.75 g. Found, %: C 45.30; H 3.75; N 17.46; S 26.48. C₉H₉N₃OS₂. Calculated, %: C 45.17; H 3.79; N 17.56; S 26.80.

<u>Amidoxime of S-symm.-triazolo(3,4-c)benzthiazolyl-3-mercaptoacetic Acid (IIIc)</u> was prepared by an analogous method. Yield of IIIc from 0.5 g of IIIa was 0.52 g, decomp. temp. 199°C (from aqueous dimethyl-formamide). Found, %: C 43.18; H 2.94; N 24.83; S 22.56. $C_{10}H_9N_5OS_2$. Calculated %: C 43.00; H 3.25; N 25.07; S 22.96.

LITERATURE CITED

- 1. D. Libermann, N. Rist, et al., Bull. Soc. Chim. Biol., 39, 1195 (1957); Bull. Soc. Chim. Fr., 1958, 687.
- 2. G. N. Pershin and T. N. Zykova, Probl. Tub., <u>1962</u>, No. 6, 82.
- N. P. Buu-Hoi, M. Welsch, N. D. Xuong, et al., Experientia, <u>10</u>, 169 (1954); N. P. Buu-Hoi, N. D. Xuong, and K. V. Thang, Bull. Soc. Chim. Fr., <u>1954</u>, 294.
- 4. U. S. patent No. 2,861,076; Chem. Abstr., <u>53</u>, 9201 (1959).
- 5. T. P. Sycheva, Z. A. Pankina, I. D. Kiseleva, et al., Chemistry of Heterocyclic Compounds [in Russian], (1966), p. 506.