The Pure Rotational Absorption Spectrum of Hydrazoic Acid in the Far-Infrared Region

JØRGEN BENDTSEN

Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark

AND

FLEMMING M. NICOLAISEN

Department of Chemistry, The H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

The pure rotational absorption spectrum of HN₃ gas has been measured in the wavenumber region 20 to 400 cm⁻¹. The observed spectrum shows irregularities which may be ascribed to higher order c-type Coriolis interaction and centrifugal distortion interactions between the ground state and the ν_5 state. The present resolution and wavenumber accuracy allows the interaction to be observed for levels with $K_a = 6-9$. The determination of the ground state parameters has been performed using wavenumbers for transitions involving $K_a \leq 5$ only. In addition to the pure rotational transitions in the ground state, some pure rotational transitions in the ν_5 and ν_6 states are identified. © 1986 Academic Press, Inc.

INTRODUCTION

The absorption of radiation by HN₃ in the far-infrared region has previously been measured by Krakov *et al.* (1). In their investigation they measured the region 20 to 250 cm⁻¹ with a resolution of 0.2–0.5 cm⁻¹. The analysis of their data yielded values for A, B, C, and D_K. The rotational constants B and C and the centrifugal distortion constants D_J, D_{JK}, H_{JJK}, and H_{JKK} had been determined earlier with much higher accuracy by means of microwave spectroscopy by Kewley *et al.* (2). Later, the A constant was determined by means of microwave spectroscopy (3) through the measurement of b-type transitions. Still D_K and H_{KKK} could not be determined, and D_K was constrained to previously determined values (1, 4) whereas H_{KKK} = 0. Through the measurement and analysis of the pure rotational Raman spectrum (5), D_K and H_{KKK} were determined more precisely. The microwave data were then reanalyzed and the result for the value of the A constant is given in Ref. (5).

In order to determine a complete set of ground state parameters without constraints and especially to improve the K-dependent parameters, the present investigation was performed.

EXPERIMENTAL DETAILS

The HN₃ gas was made by heating a mixture of stearic acid and NaN₃ under vacuum. The gas was collected in glass vessels at about 300 Torr pressure. The spectra were

TABLE I

J'K'K'	J" K <u>"</u> K"	Wavenumbers	10 ⁴ (0-C)	J	' K' K'	J" K" K"	Wavenumbers	10 ⁴ (0-C)	J' K' K'	J" K" K"	Wavenumbers	10 ⁴ (0-C)
717	606	25,4155	-12	;	2 2 1	110	61.4065	27	45 2 43	45 1 44	55.8181	-16
919	808	26.9315	-15	24	8 2 27	28 1 28	61.4715	7	422	515	55.9083	-16
10 1 10	909	27.5868	41	29	2 28	29 1 29	61.5666	-5 -5	44 2 42	44 1 43 43 1 42	55-9721	-28
12 1 12	11 0 11	29.1747	-10	3	1 2 30	31 1 31	61.8382	2	42 2 40	42 1 41	56.2718	1
13 1 13	12 0 12	29.9146	-2	3	2 2 31	32 1 32	61.9679	-8	41 2 39	41 1 40	56.4182	-8
14 1 14	13 0 13	30.6475	-23	3	3 2 32	33 1 33	62.1033	-2	40 2 38	40 1 39	56.5614	-31
16 1 16	15 0 15	32.1084	10	3	1233	34 1 34	62.2426	-0	38 2 36	38 1 37	56.8487	-7
17 1 17	16 0 16	32.8294	-7	3	5 2 34	35 1 35	62.3855	-1	37 2 35	37 1 36	56.9873	-14
18 1 18	17 0 17	33.5456	-31	3	6235	36 1 36	62.5325	-4	36 2 34	36 1 35	57.1241	-15
19 1 19	18 0 18	34.2630	-3 8	3	7236	37 1 37	62.6846	3	35 2 33	35 1 34	57.2607	6
21 1 21	20 0 20	35.6810	6	ļ	4 2 3	312	62,9708	5	33 2 31	33 1 32	57.5206	-8
22 1 22	21 0 21	36.3824	-7	4	1240	41 1 41	63.3301	-15	32 2 30	32 1 31	57.6477	-4
23 1 23	22 0 22	37.0835	16	4;	2 2 41	42 1 42	63.5026	-13	31 2 29	31 1 30	57.7710	-9
24 1 24	23 0 23	37.7783	14 Q	4	5242	43143	63.7479	-29	30 2 20	29 1 29	57.0923	-5
26 1 26	25 0 25	39.1547	-7	4	6 2 45	46 1 46	64.2329	-21	28 2 26	28 1 27	58.1252	-4
27 1 27	26 0 26	39.8402	11	_	625	514	64.5186	-6	27 2 25	27 1 26	58.2374	2
28 1 28	27 0 27	40.5202	11	5	1250	51 1 51	65.2427	-7	26 2 24	26 1 25	58,3450	-6
30 1 30	29 0 29	41,8694	11		827	716	66.0508	2	24 2 22	24 1 23	58,5515	-8
31 1 31	30 0 30	42.5396	19		928	817	66.8106	10	23 2 21	23 1 22	58,6503	-1
32 1 32	31 0 31	43.2022	-14	10	2 9	918	67.5648	5	22 2 20	22 1 21	58,7438	~12
33 1 33	32 0 32	43.0061	20	1	1 2 10	10 1 9	68.3154 69.0608	8	21 2 19	21 1 20	58,8301	1
35 1 35	34 0 34	45.1832	20	Ť	3 2 12	12 1 11	69.8021	2	19 2 17	19 1 18	59,0064	-4
36 1 36	35 0 35	45.8344	4	1	4 2 13	13 1 12	70.5389	ō	18 2 16	18 1 17	59.0873	8
37 1 37	36 0 36	46.4833	-3	15	5 2 14	14 1 13	71.2723	7	17 2 15	17 1 16	59,1622	-1
38 1 38	37 0 37	47.1312	10	10	5 2 15	15 1 14	72,0007	9	16 2 14	16 1 15	59,2335	-8 4
41 1 41	40 0 40	49.0543	21	1	8 2 17	17 1 16	73,4435	-3	14 2 12	14 1 13	59.3671	10
42 1 42	41 0 41	49.6900	28	19	9 2 18	18 1 17	74.1578	-3	13 2 11	13 1 12	59,4276	16
43 1 43	42 0 42	50.3196	0	2	0 2 19	19 1 18	74.8690	2	12 2 10	12 1 11	59.4826	8
44 1 44	43043 հե n հե	50,9494	-35	2	1 2 20	20 1 19	75.5739	-11	11 2 9	11 1 10	59.5331	-3
46 1 46	45 0 45	52,2039	26	2	3 2 22	22 1 21	76.9738	-5	927	918	59.6241	0
47 1 47	46 0 46	52.8224	- 14	2	2 23	23 1 22	77.6676	2	826	817	59.6619	-12
26 2 25	27 1 26	36.7452	-11	2	5 2 24	24 1 23	78.3562	2	725	716	59.6985	7
25 2 24	20 1 25	37.0551	-0	20	7 2 26	25 1 24	79.0384	-19	624	615	59.7329	40
23 2 22	24 1 23	39.4659	32	2	3 2 27	27 1 26	80.3962	5	422	313	63.0172	-37
22 2 21	23 1 22	40.3629	30	29	9228	28 1 27	81.0684	15	523	414	63.8298	- 15
21 2 20	22 1 21	41.2558	29	30	2 29	29 1 28	81.7332	-5	624	515	64.6463	5
19 2 18	20 1 19	42.1430	-11	3	2 30	30 1 29	83.0540	->	725	010 717	66 2869	-11
18 2 17	19 1 18	43.9071	5	3	3 2 32	32 1 31	83.7071	-8	927	8 1 8	67,1154	16
17 2 16	18 1 17	44.7825	-3	3	1 2 33	33 1 32	84.3581	8	10 2 8	919	67.9460	12
16 2 15	17 1 16	45.0541	-b h	31	7 2 35	35 1 34	85.0419	-12	11 2 9	10 1 10	68.7803	5
14 2 13	15 1 14	47.3856	-1	3/	3 2 37	37 1 36	86.9115	-2	12 2 10	12 1 12	70 4650	24
13 2 12	14 1 13	48.2463	15	39	2 38	38 1 37	87.5394	-1	14 2 12	13 1 13	71.3093	-11
12 2 11	13 1 12	49.0965	-32	. 40	2 39	39 1 38	88.1641	11	15 2 13	14 1 14	72.1642	18
11 2 10	12 1 11	49.9501	-1	4	2 2 40	40 1 39	88.7814	-9	16 2 14	15 1 15	73.0201	13
928	10 1 9	51.6392	7	4	2 42	42 1 41	90.0074	-6	18 2 16	17 1 17	74.7451	-11
827	918	52.4761	0	45	5244	44 1 43	91.2165	-3	19 2 17	18 1 18	75.6152	10
726	817	53.3098	3	46	5 2 45	45 1 44	91.8155	7	20 2 18	19 1 19	76.4886	3
525 521	71 D 61 5	54.1383	-2	4:	2 40	40 1 45	92.4044	-43	21 2 19	20 1 20	77.3668	-1
¥ 2 3	514	55.7813	-22	2	3 2 26	29 1 29	38.6459	-19	23 2 21	22 1 22	79,1390	-3
322	413	56,6023	28	21	2 25	28 1 28	39.3155	32	24 2 22	23 1 23	80.0319	12
726	717	59.9375	41	21	5 2 24	27 1 27	39.9806	-14	25 2 23	24 1 24	80,9285	4
928	919	60.0039	15	23	1 2 22	20 1 20 25 1 25	40.0581	-12	26 2 24	25 1 25	81.8325	21
10 2 9	10 1 10	60.0432	3	2	3 2 21	24 1 24	42.0218	~1	28 2 26	27 1 27	83.6525	-1
11 2 10	11 1 11	60.0870	-6	22	2 2 20	23 1 23	42.7153	34	29 2 27	28 1 28	84.5668	-1
12 2 11	12 1 12	60.1374	11	2	1 2 19	22 1 22	43.4036	-31	30 2 28	29 1 29	85,4891	-2
14 2 13	14 1 14	60.2451	-8	20	2 10	21 1 21	44.1050 hh 9133	-13	31 2 29	30 1 30	86.4171	3
15 2 14	15 1 15	60.3062	-6	18	3 2 16	19 1 19	45.5202	6	33 2 31	32 1 32	88.2865	-14
16 2 15	16 1 16	60.3730	12	17	2 15	18 1 18	46.2322	-11	34 2 32	33 1 33	89.2325	9
17 2 16	17 1 17	60.4417	8 -6	10	2 14	17 1 17	46.9513	-2	35 2 33	34 1 34	90.1802	-6
19 2 18	19 1 19	60,5912	-1	15	3 2 11	14 1 14	41.0739	-3 5	30 2 34 37 2 3F	35 1 35	91,1392	35
20 2 19	20 1 20	60.6726	ò	12	2 10	13 1 13	49.8678	-12	38 2 36	37 1 37	93.0652	25
21 2 20	21 1 21	60.7577	-3	1	2 9	12 1 12	50.6110	17	39 2 37	38 1 38	94.0339	-11
22 2 21	22 1 22	60.8473	-2	10	28	11 1 11	51.3533	-6	40 2 38	39 1 39	95.0125	-8
24 2 23	24 1 24	61.0397	8	ì	326	919	52.8572	14	41 2 39 42 2 40	40 I 40 41 1 11	95.9955	-23
25 2 24	25 1 25	61.1416	9	5	2 5	818	53.6130	-1	43 2 41	42 1 42	97.9841	-13
26 2 25	26 1 26	61.2469	3	e	2 4	717	54.3759	13	39 3 37	40 2 38	67.1990	-39
21 2 20	27 1 27	01.3572	2	5	23	616	55.1390	-12	38 3 36	39 2 37	68,0216	-29

Assignments, Wavenumbers (in $\mbox{cm}^{-1}\mbox{)},$ and Residuals of the Pure Rotational Absorption Spectrum of \mbox{HN}_3

Note. The table includes values for transitions between unperturbed levels only. Double primes refer to the initial states.

TABLE I-Continued

J' K' K'	J" K" K"	Wavenumbers	10 ⁴ (0-C)	J'K'K'	J" K" K"	Wavenumbers	10 ⁴ (0-C)	J'K'K'	J" K <u>"</u> K <u>"</u>	Wavenumbers	10 ⁴ (0-C)
37 3 35	38 2 36	68.8467	22	24 3 21	25 2 24	79,4360	-8	15 4 12	14 3 11	150,2287	10
36 3 34	37 2 35	69.6617	-13	23 3 20	24 2 23	80.2342	-1	16 4 13	15 3 12	151.0147	-2
33 3 31	34 2 32	72.1089	-13	22 3 19 h7 3 kh	23 2 22	81.0319	0	17 4 14	16 3 13	151.8024	7
31 3 29	32 2 30	73.7347	-7	46 3 43	46 2 44	98.7049	-17	10 4 15	17 3 14	152.5872	-9
30 3 28	31 2 29	74.5455	-7	45 3 42	45 2 43	98.7466	ŭ	20 4 17	19 3 16	154, 1584	-9
29 3 27	30 2 28	75.3552	-8	44 3 41	44 2 42	98,7851	-4	21 4 18	20 3 17	154.9429	-13
26 3 20	29 2 27	76.1647	-16	43340	43241	98,8202	-27	22 4 19	21 3 18	155.7283	-3
25 3 23	26 2 24	78,5843	-10	41 3 38	41 2 39	98,8909	-10	24 4 21	23 3 20	157,2931	-29
24 3 22	25 2 23	79.3918	13	40 3 37	40 2 38	98.9239	2	25 4 22	24 3 21	158.0784	-5
23 3 21	24 2 22	80.1952	4	36 3 35	38 2 36	98.9879	57	26 4 23	25 3 22	158.8607	-5
21 3 19	22 2 20	81.7999	-15	24 3 21	23 2 22	118.3314	13	28 4 25	20 3 23	159.0432	<u>,</u>
20 3 18	21 2 19	82,6035	-2	25 3 22	24 2 23	119,1189	6	29 4 26	28 3 25	161,2054	2
19 3 17	20 2 18	83.4132	79	26 3 23	25 2 24	119.9090	27	30 4 27	29 3 26	161.9854	0
16 3 14	19 2 17	84,2140	42	27 3 24 28 3 25	20 2 25	120,6920	-23	31 4 28	30 3 27	162,7656	-5
15 3 13	16 2 14	86,6103	39	29 3 26	28 2 27	122,2681	-19	33 4 30	32 3 29	164.3223	-4
14 3 12	15 2 13	87.4078	23	30 3 27	29 2 28	123.0552	-25	34 4 31	33 3 30	165.1015	9
13 3 11	14 2 12	88.2066	25	31 3 28	30 2 29	123.8439	-16	35 4 32	34 3 31	165.8791	11
11 3 9	12 2 10	89,8007	7	33 3 30	32 2 31	125.4190	-19	37 4 34	36 3 33	167.4326	18
937	10 2 8	91.3951	6	34 3 31	33 2 32	126.2064	-23	38 4 35	37 3 34	168.2079	16
836	927	92.1939	26	36 3 33	35 2 34	127.7809	-35	39 4 36	38 3 35	168.9830	19
63 2	725	92.9912	5	30 3 35	37 2 30	129.3595	-11	40 4 57	39 3 30	109.7582	29
533	624	94.5797	ĩ	40 3 37	39 2 38	130.9354	-20	42 4 39	41 3 38	171.3035	17
132	523	95.3754	2	41 3 38	40 2 39	131.7296	35	43 4 40	42 3 39	172.0753	14
331	220	101.7297	0	42 3 39	41 2 40	132,5142	-9	44 4 41	43 3 40	172.8484	30
533	422	103.3163	-0	45 3 42	42 2 41	134.8818	-19	46 4 43	44 3 41	174.3893	23
634	523	104.1085	5	46 3 43	45 2 44	135.6701	-41	47 4 44	46 3 43	175.1590	34
735	624	104.8999	-3	47 3 44	46 2 45	136,4643	-6	48 4 45	47 3 44	175.9310	68
836	825	105.6942	-3	48 3 45 36 2 23	47 2 40 17 3 11	137.2536	-25	51440	50 3 47	178,2317	64 Q2
10 3 8	927	107.2750	4	44 4 41	45 3 42	102.2957	32	53 4 50	52 3 49	179.7588	34
11 3 9	10 2 8	108.0657	ħ.	43 4 40	44 3 41	103,1041	21	54 4 51	53 3 50	180.5257	65
12 3 10	11 2 9	108.8568	12	42 4 39	43 3 40	103.9131	21	38 5 34	39 4 35	145.4153	-10
14 3 12	13 2 11	110.4367	18	40 4 37	42 3 39	105.5271	-9	31 5 27	32 4 28	151.0782	-15
15 3 13	14 2 12	111.2261	23	39 4 36	40 3 37	106.3395	36	30 5 26	31 4 27	151.8862	-10
16 3 14	15 2 13	112.0174	52	38 4 35	39 3 36	107.1456	22	29 5 25	30 4 26	152,6934	-8
17 3 15	10 2 14	112.0000	37	3/4 34	30 3 35 37 3 32	107.9521	15	26 5 22	20424	154.3000	-3
20 3 18	19 2 17	115,1646	46	35 4 32	36 3 33	109.5657	18	25 5 21	26 4 22	155.9186	2
21 3 19	20 2 18	115.9489	36	34 4 31	35 3 32	110.3681	-19	24 5 20	25 4 21	156,7240	6
22 3 20	21 2 19	110,7297	-2	33 4 30	34 3 31	111.1789	32	23 5 19 22 5 18	24 4 20	157.5304	-1
24 3 22	23 2 21	118.2956	-11	27 4 24	28 3 25	116.0036	6	21 5 17	22 4 18	159.1362	4
25 3 23	24 2 22	119.0808	20	26 4 23	27 3 24	116.8023	-40	20 5 16	21 4 17	159.9387	-4
26 3 24	25 2 23	119.8611	12	25 4 22	26 3 23	117.6090	-3	19 5 15	20 4 16	160.7425	5
28 3 26	27 2 25	121.4175	-19	23 4 20	24 3 21	119,2129	-14	17 5 13	18 4 15	162.3470	6
29 3 27	28 2 26	122,1956	-19	22 4 19	23 3 20	120.0163	0	16 5 12	17 4 13	163,1481	2
30 3 28	29 2 27	122.9743	-2	21 4 18	22 3 19	120.8170	-10	15 5 11	16 4 12	163.9494	4
31 3 29	30 2 20	125.7495	-10	20 4 17	21 3 10	121.0102	-11	14 5 10	15 4 11	164.7500	9
33 3 31	32 2 30	125.2960	-21	18 4 15	19 3 16	123.2204	-6	12 5 8	13 4 9	166.3509	12
34 3 32	33 2 31	126.0683	-17	17 4 14	18 3 15	124.0200	-13	11 5 7	12 4 8	167.1501	12
35 3 33	34 2 32	120.8385	-20	15 4 13	17 3 14	124.8186	-27	1056	11 4 7	167.9486	8
37 3 35	36 2 34	128,3754	-14	14 4 11	15 3 12	126.4196	-6	854	94 5	169.5454	14
38 3 36	37 2 35	129.1405	-21	13 4 10	14 3 11	127.2174	-17	652	743	171.1397	13
39 3 37	38 2 36	129.9044	-22	1249	13 3 10	128.0160	-17	551	642	171.9344	-5
41 3 39	40 2 38	131,4289		1047	11 3 8	120.0143	-11	652	541	181,4541	2
42 3 40	41 2 39	132.1881	2	946	10 3 7	130.4098	-17	753	642	182.2437	-2
43 3 41	42 2 40	132.9428	-16	84 5	936	131.2074	-13	854	743	183.0330	-3
44 3 42 45 3 24	43 2 41 44 2 42	133.0900	-20	744 643	835	132.0039	-10	955	844 944	163,6223	2
46 3 44	45 2 43	135.2024	14	542	633	133.5971	-11	11 5 7	10 4 6	185.3986	i i
47 3 45	46 2 44	135.9455	-32	44 1	532	134.3943	3	12 5 8	11 4 7	186.1862	8
36 3 33	37 2 36	69.8784	-20	44 1	330	141.5375	-15	13 5 9	12 4 8	186.9728	7 _h
34 3 31	35 2 34	71.4693	-10	5 4 ∠ 6 4 3	+ 3 1 5 3 2	143, 1192	-34	14 5 10	14 4 10	188,5399	-39
33 3 30	34 2 33	72.2646	-13	74 4	633	143.9084	-53	16 5 12	15 4 11	189.3296	8
32 3 29	33 2 32	73.0601	-16	845	734	144.7008	-36	17 5 13	16 4 12	190.1149	17
30 3 27 29 3 26	30 2 20	14.0534 75.4405	-14	94 0 104 7	936	145.4910	-∋∠ -42	195 14	17 4 15	191,6811	-4
28 3 25	29 2 28	76.2439	-39	11 4 8	10 3 7	147.0723	-18	20 5 16	19 4 15	192.4639	9
27 3 24	28 2 27	77.0452	4	12 4 9	11 3 8	147.8587	-45	21 5 17	20 4 16	193.2466	15
20 3 23 25 3 22	27 2 26 26 26 25	77.8424	4 15	13 4 10	12 3 9	140.0507	-11	22 5 18	21 4 17 22 4 18	194.8095	19

J" K <u>"</u> K"	Wavenumbers	10 ⁴ (0-C)	J' K' K'	J" K" K"	Wavenumbers	10 ⁴ (0-C)	J'K'K'	J" K <u>"</u> K <u>"</u>	Wavenumbers	10 ⁴ (0-C)
23 4 19	195.5880	1	34 5 30	33 4 29	203.3576	5	44 5 40	43 4 39	211.0599	-13
24 4 20	196.3678	2	35 5 31	34 4 30	204.1296	-10	45 5 41	44 4 40	211,8251	-27
25 4 21	197.1479	12	36 5 32	35 4 31	204.9017	-16	47 5 43	46442	213.3545	-44
26 4 22	197.9259	7	37 5 33	36 4 32	205.6760	6	50 5 46	49 4 45	215.6536	34
27 4 23	198.7048	17	38 5 34	37 4 33	206.4485	16	51 5 47	50 4 46	216.4131	6
28 4 24	199.4810	6	39 5 35	38 4 34	207.2172	-4	52 5 48	51 4 47	217.1707	-34
29 4 25	200.2580	10	40 5 36	39 4 35	207.9877	0	53 5 49	52448	217.9299	-50
30 4 26	201.0345	15	41 5 37	40 4 36	208.7570	-1	54 5 50	53 4 49	218.6903	-47
31 4 27	201.8085	2	42 5 38	41 4 37	209.5241	-17	55 5 51	54 4 50	219.4496	-47
32 4 28	202.5854	23	43 5 39	42 4 38	210.2927	-11				

TABLE I—Continued

J١ K_a^{+},K_c^{+}

recorded on a Bruker 113V FTIR instrument. The spectral resolution was measured to be 0.03 cm^{-1} in close agreement to the theoretical limit set by the maximum optical path difference of 32 cm. The wavenumbers of the absorption lines were determined by means of a peak-finder program, and the calibration was performed by means of the wavenumbers for selected water vapor lines measured by Kauppinen *et al.* (6). The appearance of water vapor lines is due to residual air in the instrument. To cover the whole spectral region where pure rotational transitions could be detected, two experiments were performed. The low-wavenumber range 20-130 cm⁻¹ was measured using a 28-cm cell with Teflon windows and filled to 3 Torr pressure. The total scan time was 13 hr. To measure the high-wavenumber region $(100-400 \text{ cm}^{-1})$, the total scan time was 12 hr using a 20-cm cell equipped with polyethylene windows and filled to 10 Torr pressure.

The results of the measurements are wavenumbers for about 1100 absorption lines. Nearly all lines were assigned to pure rotational transitions for HN_3 in the ground state or in the vibrationally excited states v_5 and v_6 . For reasons explained later, not all lines were used in the analysis and only the wavenumbers used in the analysis are given in Table I.

Selected parts of the observed spectrum are shown in Figs. 1, 3, and 4.

ASSIGNMENTS

The HN₃ molecule is a slightly asymmetric rotor. The quantum number K_a for the limiting prolate top may then be used to identify the transitions. The spectrum appears as a number of subbands each corresponding to a value of K_a^{\prime} (lower state) and the selection rules $\Delta K_a = 1$, $\Delta K_c = \pm 1$, and $\Delta J = 0$, ± 1 . The asymmetry of the molecule is observed through the splitting of the transitions starting from the $K''_a = 1$ and 2 levels (see Fig. 1). Using the previously determined values for the ground state parameters (3, 5), the assignments of the ground state transitions were straightforward. Thus 860 observed ground state transitions were identified, but only the assignments for the wavenumbers listed in Table I are given.

In addition to the pure rotational transitions in the ground state, about 250 pure rotational transitions in the v_5 and v_6 states were observed. The assignments were straightforward using the constants for these levels given in Ref. (6). Q and R branches for $K_a^{"} = 2$ through 7 in the ν_5 state were identified whereas the P branches were too weak to be observed. In the ν_6 state Q and R branches for $K''_a = 2, 4, and 5$ were assigned.

FIG. 1. The upper trace shows the region of the ${}^{R}Q_{1}(J)$ branch. The effect of the asymmetry of the molecule is clearly observed by the degradation to opposite wavenumbers of the two series of lines which constitute the Q branch. The lower trace shows the region of the unresolved ${}^{R}Q_{4}(J)$ branch, the ${}^{R}Q_{5}(J)$ branch in ν_{5} , and the ${}^{R}Q_{3}(J)$ branch in ν_{6} . Asterisks refer to the ν_{5} state and Δ 's refer to the ν_{6} state.

GROUND STATE ANALYSIS

Each subband was subjected to a least-squares analysis using a fourth-order polynomial in the *J*-quantum number in order to determine the subband origins v_{sub} and to check the assignments. The subband origins are given in Table II.

By means of the values for v_{sub} , the energies for the K_a rotational levels of the ground state have been calculated, and the results are given in Table III.

Next, a least-squares analysis was performed on the assigned wavenumbers of the pure rotational spectrum using the Hamiltonian given by Watson (7). During the

KaPure rotation $v_5(\Delta K_a=0)$ Pure rotation0(2.639)537.2642(7)19.977(7)1(26.919)519.9259(5)59.8196(7)263.155(5)487.0256(6)99.3481(8)3101.466(1)450.8227(4)138.3649(3)4139.97(1)413.9196(8)176.7038(3)5177.989(1)377.161(1)214.2136(2)6215.12(1)(340.936)250.7705(3)7252.52(2)(305.286)286.323(2)						
к _а	Pure rotation	v ₅ (∆K _a =0)	Pure rotation			
	in $v_5(\Delta K_a=1)$		Gr.st.(∆K _a =1)			
0	(2.639)	537.2642(7)	19.977(7)			
1	(26.919)	519,9259(5)	59.8196(7)			
2	63,155(5)	487,0256(6)	99.3481(8)			
3	101,466(1)	450,8227(4)	138.3649(3)			
4	139.97(1)	413,9196(8)	176.7038(3)			
5	177.989(1)	377.161(1)	214.2136(2)			
6	215.12(1)	(340.936)	250.7705(3)			
7	252.52(2)	(305,286)	286.323(2)			
8		(271,483)	321.05(2)			
9			353.37(4)			
10			387.5(2)*			

-			**
T.	AB	LE	Ш

Subband Origins (in cm⁻¹)

Note. The values have been obtained by analyzing each subband separately using the wavenumber expression for a diatomic molecule. The errors are standard deviations representing the quality of the fit only. Numbers in parentheses are calculated values.

* Q-branch maximum estimated from the spectrum.

TABLE III

Values (in cm⁻¹) for the K_a Rotational Energy Levels in the Ground State and in the ν_5 State of HN₃ Calculated from the Numbers Given in Table II

ĸ _a	Ground state	v_5 state
0	0	537.26
1	19.98	539.90
2	79.80	566.82
3	179.14	629.97
4	317.51	731.43
5	494.21	871.37
6	708.43	1049.36
7	959.20	1264.48
8	1245.52	1512.00
9	1566.57	
10	1919.94	
11	2307.4	

Ground State Parameters (in cm ⁻¹) for HN ₃							
		Far IR	Microwave/ Far IR	Microwave (Ref. 3)	Raman (Ref. 5)		
	A	20.38166(7)	20.38193(2)	20.3806(2)	20,382(3)		
	В	0.401437(9)	0.4014441(2)	0.4014158(2)	0.00740/0)		
	С	0.392955(9)	0.3929588(2)	0.3929869(2)	0.39/18(2)		
10 ⁷	Δ.1	1.67(5)	1.56(2)	1.55(2)	1.97(7)		
10 ⁵	∆.jk	2.632(9)	2.647(2)	2.639(4)	2.5(2)		
10 ³	Δ.κ	8.955(6)	8.955*	7.7*	8.71(9)		
10 ⁹	δ.1	2.7(3)	2.97(8)	2.96(8)	0*		
10 ⁶	δĸ	3.5(3)	3.5*	0*	-		
10 ¹³	Н.,,,,	2(15)	45(17)	29(12)	-		
10 ¹⁰	Налк	1.5(4)	19(6)	14(3)	-		
10 ⁸	HJKK	-4.0(2)	-3.8(2)	-4.0(1)	-		
10 ⁵	нккк	1.28(2)	1.28*	0	0.74(9)		

TABLE IV

* Constrained.

analysis it turned out that only wavenumbers assigned to $K_a^{"} \le 4$ would fit the analysis. This may be explained by *c*-type Coriolis interaction and centrifugal distortion interactions (8) between the ground state levels and the ν_5 levels. The lack of fit for wavenumbers assigned to $K_a^{"} \ge 5$ are K_a dependent as well as J dependent.

The final analysis therefore includes the 533 lines of the five lowest subbands only. The results of the analysis are given in Table IV.

To get an impression of the magnitude of the perturbation, the following transitions were calculated by means of the constants given in the first column of Table IV and compared to the observed wavenumbers:

Transition	Observed wavenumbers	Obs. – Calc.
$39_{6,33} \rightarrow 40_{7,34}$	281.569	-0.267
$40_{7,33} \rightarrow 41_{8,34}$	315.397	-2.662
$38_{8,30} \rightarrow 39_{9,31}$	356.450	5.387
$28_{919} \rightarrow 29_{10,20}$	375.535	-1.703

HOT BAND ANALYSIS

Each subband of the hot bands was analyzed similarly to the ground state subbands. The calculated subband origins are included in Table II for the v_5 state, and in addition,

FIG. 2. Plot of the rotational energy levels in the ground state and in the v_5 state (see text).

FIG. 3. Traces showing the degradation of the ${}^{R}Q_{7}(J)$ and the ${}^{R}Q_{8}(J)$ branches in the ground state.

FIG. 4. Traces showing the degradation of the ${}^{R}Q_{5}(J)$ and ${}^{R}Q_{7}(J)$ branches in the ν_{5} state.

the values for the subband origins for the v_5 band are given. These last mentioned values are calculated from the observed v_5 lines with $\Delta K_a = 0$ given in Ref. (9).

From these data, five additional subband origins (which are not directly observed) may be determined. The values are given in parentheses in Table II.

Combining all values given in Table II, the K_a -dependent part of the energy levels with $K_a^{"} = 0$ through 10 and 8 may be determined for the ground state and the ν_5 state, respectively. The results are given in Table III and the values are used for Fig. 2.

The hot bands of the ν_6 fundamental do not contribute any new information of this band, and therefore the values for the subband origins are not included in Table II.

TABLE V

Reduced Frequencies (in MHz) Evaluated as Described in Ref. (3)

J"	K"a	K"	Ĵ,	K'a	K'c	Frequency	ObsCalc.
2	0	2	3	0	3	71446.069	0.081
2	1	2	3	1	3	71062.607	0.146
2	1	1	3	1	2	71820.772	0.244
12	1	12	12	1	11	19705.890	0.053
23	0	23	22	1	22	19792.439	0.045

DISCUSSION

As mentioned, there might be a c-type Coriolis interaction and centrifugal distortion interactions between the ground state levels and the v_5 levels. Levels differing in K_a by ± 1 , $(\pm 3 \cdot \cdot \cdot)$ are interacting. Looking at the energy level diagram in Fig. 2, it is seen that the ground state levels with $K_a = 6$, 7, 8, and 9 are very close to the levels of v_5 that have $K_a = 5$, 6, 7, and 8, respectively. For the ground state $K_a = 8$ and 9, a crossing occurs. The effect of the crossing would be expected to be a lowering of the $K_a = 8$ levels and a pushing up of the $K_a = 9$ levels. This is experimentally verified by the appearance of the ${}^{R}Q_{7}(J)$ and ${}^{R}Q_{8}(J)$ branches which are degraded to lower and higher wavenumbers, respectively. The spectra of these two Q branches are shown in Fig. 3.

The Coriolis resonance may have a similar effect on the ${}^{R}Q_{6}(J)$ and ${}^{R}Q_{7}(J)$ pure rotational branches in the ν_{5} state. Through the interaction where ${}^{R}Q_{7}(J)$ (ground state) lines are degraded to lower wavenumbers, the ${}^{R}Q_{6}(J)$ (ν_{5}) lines must be pushed upward and vice versa for ${}^{R}Q_{8}(J)$ (ground state) and ${}^{R}Q_{7}(J)$ (ν_{5}). The two hot band Qbranches are shown in Fig. 4. The ${}^{R}Q_{6}(J)$ is clearly degraded to higher wavenumbers. The ${}^{R}Q_{7}(J)$ branch is partly obscured by the ${}^{R}Q_{6}(J)$ ground state branch, but the few lines on the high-wavenumber side of the ${}^{R}Q_{6}(J)$ ground state branch clearly indicate a series of lines degrading to lower wavenumbers.

The present determination of ground state parameters are based on those transitions which are unaffected by the Coriolis resonance as measured with the present resolution and wavenumber accuracy. The results are given in the first column of Table IV together with previously determined values (columns 3 and 4). When comparable, it is seen that the agreement between the values obtained by the different types of experiments is satisfactory. However, the values obtained from the microwave data are dependent of the values for Δ_K , δ_K , and H_{KKK} . During the time the microwave data were analyzed, the value for Δ_K was taken as the value of D_K given in Ref. (4), and δ_K and H_{KKK} had to be constrained to zero because no values for these constants were available.

In the present work, a value for δ_K has been determined and the accuracy of the values of Δ_K and H_{KKK} have been improved considerably compared to the values obtained by Raman spectroscopy. Consequently, the microwave data have been reanalyzed, constraining Δ_K , δ_K , and H_{KKK} to the values obtained in this investigation. In addition, frequencies measured later for other transitions than those given in Ref. (3) have been included in the reanalysis of the microwave data. The additional microwave frequencies are given in Table V. The results of this analysis are given in column 2 of Table IV. Comparing columns 1 and 2, it is seen that the agreement between the values obtained is excellent.

The model used does not account for the interaction between the ground state and the ν_5 and ν_6 states. In the analyses of the spectra of ν_5 and ν_6 , the interaction between these two bands were taken into account. The next step is to take into account the mutual interaction of all three states, and work is in progress to develop a program by which all three bands may be analyzed simultaneously.

BENDTSEN AND NICOLAISEN

ACKNOWLEDGMENTS

The authors express their gratitude to Gunhild Nathansen and Anni Stenstrup for their patient and faithful cooperation. The Danish Science Research Council is thanked for a grant to purchase the Bruker FTIR spectrometer (Grant No. 11-3832).

RECEIVED: April 17, 1986

REFERENCES

- 1. B. KRAKOV, R. C. LORD, AND G. O. NEELY, J. Mol. Spectrosc. 27, 148-176 (1968).
- 2. R. KEWLEY, K. V. L. N. SASTRY, AND M. WINNEWISSER, J. Mol. Spectrosc. 12, 387-401 (1964).
- 3. J. BENDTSEN AND M. WINNEWISSER, Chem. Phys. Lett. 33, 141-145 (1975).
- M. CARLOTTI, G. DI LONARDO, G. GALLONI, AND A. TROMBETTI, Trans. Faraday Soc. 67, 2852-2861 (1971).
- 5. J. BENDTSEN, J. Raman Spectrosc. 6, 306-313 (1977).
- 6. J. KAUPPINEN, T. KÄRKKÄINEN, AND E. KYRÖ, J. Mol. Spectrosc. 71, 15-45 (1978).
- 7. J. K. G. WATSON, J. Chem. Phys. 46, 1935-1949 (1967).
- 8. K. YAMADA, J. Mol. Spectrosc. 81, 139-151 (1980).
- 9. J. BENDTSEN, F. HEGELUND, AND F. M. NICOLAISEN, J. Mol. Spectrosc. 118, 121-131 (1986).