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EQUIVALENT VISCOUS DAMPING FOR A BILINEAR

HYSTERETIC OSCILLATOR

By C. K. Reddy1 and R. Pratap2

ABSTRACT: A bilinear hysteretic model is commonly used to study elastoplastic structures. In this paper, a
damped, bilinear hysteretic oscillator is studied under harmonic loading. We show the existence of an equivalent
viscous damping for small values of a loading parameter such that the associated linear structure and the
hysteretic structure have the same frequency response curves. We use the Kryloff-Bogoliuboff method of av-
eraging to find the equivalent viscous damping as a function of the steady state amplitude. We present a model
of a bilinear elastic oscillator which captures the steady-state dynamics of the hysteretic oscillator for low values
of the loading parameter. We also study the nature of the dependence of the equivalent viscous damping on the
kinematic hardening parameter.
INTRODUCTION

A bilinear hysteretic model is used to study the response of
various elastoplastic structures. For fundamental analysis and
understanding, a single-degree-of-freedom model often suf-
fices. Much of the literature on studies of elastoplastic struc-
tures is based on this model. There have been numerous stud-
ies on the forced response of elastoplastic structures
(Tanabashi 1956; Caughey 1960; Iwan 1964; Ballio 1970; Pra-
tap et al. 1994; Savi and Pacheco 1997). It is often convenient
to study the steady-state dynamics of an elastoplastic oscillator
by considering an equivalent linear structure (Jacobsen 1960;
Berg 1965; Jennings 1968; Iwan and Gates 1979). Jennings
(1968) compares the various ways in which an equivalent lin-
ear structure can be defined to get frequency and amplitude
matching. He considers an undamped, elasto-perfectly-plastic
oscillator under harmonic excitation. Iwan and Gates (1979)
compare the accuracy of the various methods for defining
equivalent linear systems by considering a damped bilinear
hysteretic oscillator subjected to earthquake loading and har-
monic excitation.

The resonant amplitude method, dynamic stiffness method,
and dynamic mass method are some of the methods used for
defining equivalent linear systems. In all the above methods,
the frequency shift exhibited by hysteretic systems cannot be
taken care of by defining the equivalent viscous damping ceq

alone. In this paper, we address the issue of whether the
steady-state dynamics of a hysteretic oscillator can be com-
pletely captured by an equivalent linear system by just defining
a new equivalent viscous damping. We analyze the response
of a damped single-degree-of-freedom oscillator, having bilin-
ear hysteresis, to harmonic forcing. For small values of the
forcing amplitude and damping, it is shown that the steady-
state response of the hysteretic oscillator is represented com-
pletely in terms of an equivalent linear structure by finding an
equivalent viscous damping. The bilinear hysteretic oscillator
and the bilinear elastic oscillator both show soft resonance
behavior. We use this behavior to get a better frequency and
amplitude match by studying a model of the bilinear nonhys-
teretic oscillator. The functional relationship between the non-
dimensional equivalent viscous damping defined in the model
and the kinematic hardening parameter is also studied.
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FIG. 1. Force Deflection Diagram for Bilinear Hysteresis

EQUATION OF MOTION

The equation of motion of a forced, damped bilinear hys-
teretic oscillator is written as

mÿ 1 cẏ 1 F(y, ẏ) = P cos Vt (1)

F is the hysteretic restoring force, c represents the damping
coefficient, and y is the displacement. P is the amplitude of
the forcing with frequency V. The nondimensional equation
of motion is given by

ẍ 1 c ẋ 1 f (x, ẋ) = p cos vt (2)0

where x = y/y0; t = v0t; = k/m; f = F/F0; p = P/F0; c0 =2v0

v = V/v0. The force-deflection diagram is shown inc/ km;Ï
Fig. 1. The nondimensional restoring force f is not a single-
valued function of the nondimensional displacement x. It de-
pends upon x as well as the sign of ẋ. For the plastic flow
rule, we have assumed kinematic hardening. This essentially
means that the total range of displacement in the elastic phase
remains the same, irrespective of the net plastic displacement
(Mendelson 1968). The parameter h2 represents the kinematic
hardening parameter; h2 = 0 would mean a perfectly plastic
case, and h2 = 1 a perfectly elastic case.

APPROXIMATE FREQUENCY RESPONSE EQUATION

Here we obtain an approximate response of the hysteretic
oscillator to the applied harmonic load by using the method
of averaging on the harmonic response of the oscillator, ig-
noring hysteresis. We first assume the solution of the form

x(t) = x cos(vt 1 f) (3)s
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FIG. 2. Comparison of Approximate Solution (Solid Curve) against Numerical Solution (Dotted-Dashed Curve)

FIG. 3. Typical Frequency Response Curve
where xs and f are slowly varying parameters of t. Using the
method of slowly varying parameters, and for v ' 1, we get
(see Appendix I for details of the calculation)

2 2 2 2 2 2(2b 2 c ) 6 (2b 2 c ) 2 4(a 1 b 2 g 2 2c a)Ï0 0 02v =
2

(4)

The variables g, b, and a are functions of the amplitude of
motion xs (see Appendix I). Hence, for constant c0, p, and h2,
(4) can be written as
JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2000
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2v = G(x ) (5)s

where G(xs) represents the functional dependence of v2 on xs.
Fig. 2 shows a comparison between the exact (numerical) so-
lution and the approximate solution. It is seen that the method
of averaging approximates the exact solution quite well, even
for values of v away from unity.

EQUIVALENT VISCOUS DAMPING

Fig. 3 shows a typical frequency response curve for a bilin-
ear hysteretic oscillator, which exhibits soft resonance. To find
.126:1189-1196.
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FIG. 4. Region I Giving Values of p and c 0 for Which Curves for h2 [ [0, 1) Fall within Curve for h2 5 1

FIG. 5. Frequency Response Curves for Values of p and c 0 outside Region I
the extent of frequency shift, we can find out the difference
between the frequency for a given h2 [ [0, 1) and v1 forv 2h

h2 = 1 for different values of xs. A positive value of 2(v 2h

v1) = Dv will mean that the curve for a given h2 falls inside
the curve for h2 = 1, and a negative value will mean that the
curve falls outside the curve for h2 = 1. We can find the values
of p and c0 for which the frequency response curves for all h2

[ [0, 1) fall within the curve for h2 = 1. See Fig. 4. For all
p and c0 within Region I, we get frequency response curves
for all h2 [ [0, 1) within the curve for h2 = 1. For small
J. Eng. Mech. 2000
values of c0, the line separating Region I is almost linear and
has a slope equal to 2. Fig. 5 shows the case for values of p
and c0 outside Region I. The above observations lead to the
following propositions.

Proposition 1. In all steady-state motions of the form xs

cos(vt 1 f) involving plastic cycles, for small values of c0

and for (p/c0) < 2, there exists ce > 0 for all h2 [ [0, 1), where
ce = ce(xs, h2), such that the following linear equation

ẍ 1 (c 1 c )ẋ 1 x = p cos vt (6)0 e
JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2000 / 1191
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FIG. 6. Frequency Response Curves for Different Values of h2 (Dotted-Dashed Curve) and ce (Solid Curve) for Same p and c 0
and (2) are equivalent, that is, the frequency response curves
are the same for a given p and c0. We define ce as the equiv-
alent viscous damping.

Proof: The proof is based upon the nature of the frequency
response curves for different values of h2 [ [0, 1) for values
of (p/c0) < 2 (Fig. 6). It is seen that all curves fall within the
curve for h2 = 1. We also know that the frequency response
curves of the associated linear system given by (6) with in-
creasing values of ce lie within the curve for h2 = 1 (or ce =
0). Since the hysteretic curves and the curves for increasing
constant values of ce start and end at different points respec-
tively, the intersection of these curves is always transversal,
except for the case discussed in the next proposition. This
means that every point on the curve with a particular h2 is
intersected by a curve with a particular constant value of ce.
Since there is a continuous one-to-one mapping between the
curves with different constant values of ce, every point on a
curve with a particular h2 has a unique ce such that the am-
plitude is the same at the same frequency. This shows that the
frequency response for a particular h2 can be exactly repre-
sented by (3) with a variable ce that depends on xs.

Proposition 2. For small values of c0 and (p/c0 < 2, there
exists a constant ce for a particular h2 [ [0, 1), such that the
frequency response curve with ce is tangent to the frequency
response curve with h2 for a given p and c0.

Proof: To prove Proposition 2, it is enough to note that if a
particular curve with a constant ce intersects a curve for a
particular h2, it does so in at most two points. Now there is a
continuous one-to-one mapping between the curve with a con-
stant ce that intersects with the curve for h2 and one with a
different value of ce that does not intersect. This implies that
there exists one curve between these two curves that is tangent
to the h2 curve (Fig. 6).

APPROXIMATE EXPRESSION FOR THE EQUIVALENT
VISCOUS DAMPING

In case of the linear oscillator given by (6), we can express
ce as a function of xs and v as
1192 / JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2000
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2 2 2g 2 (1 2 v )
c = 2 c (7)e 0Î 2v

Substituting for v2 from (5), we have

2 2g 2 (1 2 G(x ))s
c = 2 c (8)e 0Î G(x )s

As h2 decreases, the range of values that ce takes increases
because the amount of plastic damping increases.

BILINEAR ELASTIC OSCILLATOR AND EQUIVALENT
VISCOUS DAMPING

The frequency response curves of both the bilinear nonhys-
teretic (elastic) oscillator and the bilinear hysteretic oscillator
show a leftward shift. This behavior is typical of soft springs
(Nayfeh and Mook 1979). Because the linear system does not
exhibit soft spring behavior, we do not generally get frequency
match when the amplitudes are matched by defining the equiv-
alent viscous damping only. However, since the bilinear hys-
teretic and the nonhysteretic oscillator show the same behavior
as far as frequency response curves are concerned (for low
loading parameters), we can expect a better frequency match
when the amplitudes are matched in the equivalent bilinear
nonhysteretic oscillator.

Hysteretic damping comes into play when the oscillator
goes into the plastic regime (uxu > 1 in the nondimensional
model). So, the only way this can be captured in the bilinear
nonhysteretic oscillator is by introducing additional damping
in the branch with slope h2. The equivalent viscous damping,
which would be a function of the loading parameter p and
viscous damping c0, would be just that value which gives the
same resonant amplitude for a given value of h2. The value
of c0 together with p decides the values of v, for which we
have uxu > 1. Since we are introducing damping partly, the
range of these values of v remains unaffected, which is not
the case when we introduce additional damping throughout.

The bilinear nonhysteretic model studied is described by the
following equations:
.126:1189-1196.
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FIG. 7. Frequency Response Curves of Bilinear Hysteretic Oscillator (Solid Curve) and Bilinear Nonhysteretic Oscillator (Dotted-
Dashed Curve) with Corresponding Value of ca for Resonant Amplitude Match

FIG. 8. Variation of X against ca for Given Values of p and h2 for Bilinear Nonhysteretic Oscillator
ẍ 1 d(ẋ) 1 s(x) = p cos vt (9)

where

c ẋ uxu # 10d(ẋ) = H(c 1 c )ẋ uxu > 10 a

x uxu # 1
s(x) = 2Hh (x 2 1) 1 sign(x) uxu > 1
J. Eng. Mech. 200
and

1 x > 0
sign(x) = H21 x < 0

The value of ca, which gives the same resonant amplitude for
a given h2, is defined as the new nondimensional equivalent
viscous damping Ce for a given p and c0. Fig. 7 shows that
we get a resonant frequency match when the resonant ampli-
tudes are matched.
JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2000 / 1193
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FIG. 9. Logarithmic Plot of X 2 1 against ca for Bilinear Nonhysteretic Oscillator

FIG. 10. Comparison of Approximate Relation between Ce and h2 with Values Obtained Numerically
FUNCTIONAL RELATIONSHIP BETWEEN Ce AND h2:
UNDAMPED CASE

Consider an undamped (c0 = 0) hysteretic oscillator to seek
a relationship between the equivalent viscous damping Ce and
the kinematic hardening parameter h2. For the undamped hys-
teretic oscillator, we have a simple relation between the res-
onant amplitude X and h2 for a given p (Caughey 1960).
NAL OF ENGINEERING MECHANICS / NOVEMBER 2000
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24(1 2 h )
X = (10)24(1 2 h ) 2 pp

If we can get a relation between the resonant amplitude X
and ca for the bilinear nonhysteretic oscillator, for a range of
values of h2 and some given p, then equating this relation with
(10) would give us the desired relationship between Ce and
h2. It is clear that as ca takes large values, Xs will tend to unity.
0.126:1189-1196.
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See Fig. 8, which suggests an exponential relationship between
X and ca for a given h2 and p. This would mean that we have
unity on the right hand side of the probable relation between
X and ca. A logarithmic plot of X 2 1 versus ca gives a straight
line (Fig. 9).

It is clear that the relation between X and ca for the range
of chosen values of h2 is of the form

AX = Bc 1 1 (11)a

The values of h2 are chosen away from the value that gives
unbounded resonance (h2 = 1 2 pp/4) for a given p. Also the
values of ca start away from zero to circumvent the difficulty
of finding the resonant amplitude numerically. A is the slope
of the straight line obtained from the logarithmic plot, and B
is equal to the exponential of the vertical intercept. A and B
depend upon h2 for a given p. It has been observed that the
variation of A and B with respect to h2 is very slight. A and
B are calculated using average values of slope and the vertical
intercept over the range of values of h2 used. A = 20.8 and
B = 0.5142 in our case for p = 0.3. Equating (10) and (11),
and noting that the value of ca that gives the same resonant
amplitude is Ce, we have

1/A
pp

C = (12)e S D2B(4(1 2 h ) 2 pp)

It can be seen from Fig. 10 that the approximate relationship
given by (12) compares well with the values obtained numer-
ically.

The relation in (12) is a quick way to obtain a measure of
the dissipation in a structure that shows hysteresis. Engineers
are primarily concerned with the resonant amplitude and res-
onant frequency of a structure. The preceding discussion
shows that it is possible to study the steady-state dynamics of
a somewhat involved model of a hysteretic structure by study-
ing a simpler nonhysteretic model with equivalent damping.

CONCLUSIONS

It is shown that for certain values of the loading parameter
and viscous damping that is present throughout, the frequency
response of a single-degree-of-freedom damped bilinear hys-
teretic oscillator under harmonic loading can be represented
exactly by the frequency response of a linear oscillator under
the same loading by introducing a variable equivalent viscous
damping. An approximate implicit relation between the equiv-
alent viscous damping and the steady-state amplitude is de-
rived using the Kryloff-Bogoliuboff method of averaging. The
‘‘soft’’ type of resonance exhibited by the damped bilinear
hysteretic oscillator and the bilinear nonhysteretic oscillator is
used to suggest a model of the bilinear nonhysteretic oscillator
with extra damping introduced to capture the steady-state dy-
namics of the hysteretic oscillator. Resonant amplitudes are
matched, and the corresponding extra damping is termed the
equivalent viscous damping. It is observed that the resonant
frequencies are nearly the same when the resonant amplitudes
are matched. An approximate relation between the equivalent
viscous damping in the case of the bilinear nonhysteretic os-
cillator and the kinematic hardening parameter is derived for
a given value of the loading parameter.

APPENDIX I. APPROXIMATE FREQUENCY
RESPONSE EQUATION

Let m = 1 2 h2. Hence, for the case m = 0, we have

x(t) = x cos(vt 1 f) (13)s

ẋ(t) = 2vx sin(vt 1 f) (14)s
J. Eng. Mech. 200
where xs and f are constants. For nonzero but small m, assume
a solution of the form

x(t) = x cos(vt 1 f) (15)s

where xs and f are slowly varying parameters of t. Therefore
the velocity is given by

˙ẋ(t) = 2vx sin u 1 ẋ cos u 2 x f sin u (16)s s s

where u = vt 1 f for simplicity. Now, from (14), we get

ẋ(t) = 2vx sin(u) (17)s

Comparing (16) and (17) we have

˙ẋ cos u 2 x f sin u = 0 (18)s s

Similarly

2 ˙ẍ(t) = 2v x cos u 2 vẋ sin u 2 vx f cos u (19)s s s

The method of averaging (Caughey 1960) is used to find the
frequency v as a function of the steady-state amplitude xs, for
v ' 1, as

2 2 2 2 2 2(2b 2 c ) 6 (2b 2 c ) 2 4(a 1 b 2 g 2 2c a)Ï0 0 02v =
2

(20)

For a bilinear hysteretic oscillator, b and a can be found to
be

m 2a = 2 [sin u*] (21a)
p

1 m
b = mu* 1 (1 2 m)p 2 sin 2u* ; g = p/x (21b,c)sF Gp 2

where u* = cos21[1 2 (2/xs)].
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APPENDIX III. NOTATION

The following symbols are used in this paper:

Ce = equivalent viscous damping in case of bilinear nonhyster-
etic oscillator;

c = coefficient of viscous damping;
ca = extra damping in case of bilinear nonhysteretic oscillator;
ce = equivalent viscous damping in case of linear oscillator;
c0 = nondimensional coefficient of viscous damping;
F = restoring force for bilinear hysteretic oscillator;
f = nondimensional restoring force for bilinear hysteretic os-

cillator;
G = function defining relation between frequency ratio and

steady state amplitude;
1196 / JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 2000
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k = stiffness of elastic branch of hysteretic oscillator;
m = mass of hysteretic oscillator;
P = forcing amplitude;
p = nondimensional forcing amplitude;
t = time;

X = resonant amplitude;
x = nondimensional displacement;
xs = steady state amplitude;
y = displacement of hysteretic oscillator;

h2 = kinematic hardening parameter;
t = nondimensional time;
f = slowly varying phase;
V = frequency of harmonic forcing; and
v = nondimensional frequency.
0.126:1189-1196.


