

Huge steric effect in the reaction Li+HF(v=1,j=1) \rightarrow LiF+H

H. J. Loesch, E. Stenzel, and B. Wüstenbecker

Citation: The Journal of Chemical Physics **95**, 3841 (1991); doi: 10.1063/1.460785 View online: http://dx.doi.org/10.1063/1.460785 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/95/5?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Exact quantum stereodynamics: The steric effect for the Li+HF \rightarrow LiF+H reaction J. Chem. Phys. **107**, 3339 (1997); 10.1063/1.474684

Steric effects in total integral reaction cross sections for Sr+HF(v=1,j=1,m=0) \rightarrow SrF+H J. Chem. Phys. **100**, 4308 (1994); 10.1063/1.466312

Steric effects in the state specific reaction Li+HF (v=1, j=1, m=0) \rightarrow LiF+H J. Chem. Phys. **98**, 9570 (1993); 10.1063/1.464388

A quasiclassical trajectory test for a potential energy surface of the Li+HF reaction J. Chem. Phys. **77**, 6341 (1982); 10.1063/1.443840

The dynamics of the reaction $Sr+HF(v = 1) \rightarrow SrF+H$: Effect of rotation J. Chem. Phys. **75**, 2779 (1981); 10.1063/1.442349

Huge steric effect in the reaction $Li + HF(v=1, j=1) \rightarrow LiF + H$

H. J. Loesch, E. Stenzel, and B. Wüstenbecker Fakultät für Physik, der Universität Bielefeld, 4800 Bielefeld, Germany

(Received 10 June 1991; accepted 25 June 1991)

The influence of the collision geometry on bimolecular reactions is experimentally well established¹⁻⁵ but owing to the lack of precise *ab initio* potential energy surfaces (PESs) for the systems investigated so far, the experimental data could not be compared with theoretical predictions. For Li + HF, however, a reliable *ab initio* PES exists.⁶ In the present letter we report steric effects observed in a crossed beam study on the title reaction and the results of a trajectory calculation based on this PES.

The experimental configuration, including the infrared radiation pumping technique which we employ to prepare the collision geometry, has been described in more detail elsewhere.^{4,7} Briefly, the infrared radiation of a color center laser was irradiated perpendicularly onto an HF nozzle beam. The laser was tuned to the $R_1(0)$ transition to pump a fraction of the molecules into the v = 1, j = 1, m = 0state. This state exhibits a marked alignment of the molecular axis but-without taking precautions-the optically prepared polarization is destroyed within a few microseconds by nuclear spin-rotation coupling.⁸ To avoid this we generate-deviating from Refs. 4 and 7-an electric field which extends from the excitation zone to the reaction volume. The field dependence of the measured steric effects indicates that complete decoupling is obtained already at a field strength > 3 kV/cm. The polarization vector of the infrared radiation was set parallel to the field (\mathbf{E}_s) and thus the selection rule $\Delta m = 0$ applies with respect to \mathbf{E}_s as quantization axis. The field at the intersection of the reagent beams (guiding field, E_{g}) can be chosen to be either parallel or perpendicular to the mean relative velocity of the reagents, V. The field strength ($\approx 10 \text{ kV/cm}$) and the shape of the electrodes were chosen such that a molecule which moves downstream from the excitation zone to the reaction volume experiences a field whose direction changes sufficiently slowly so that the prepared state can adiabatically follow the rotating quantization axis.

The density function A describing the probability for finding the molecular axis pointing into a certain direction is given by the square modulus of the prepared rotor eigenfunction $Y_{1,0}$, where m = 0 refers to the quantization axis E_g . With respect to V as quantization axis two distributions result which are given by

$$\widetilde{A}_{\parallel} = \frac{3}{4\pi} \cdot \cos^2 \gamma_a, \tag{1}$$

$$\widetilde{A}_1 = \frac{3}{4\pi} \cdot \sin^2 \gamma_a \cdot \cos^2 \phi_a \tag{2}$$

for $\mathbf{E}_{g} \| \mathbf{V}$ and $\mathbf{E}_{g} \perp \mathbf{V}$, respectively; γ_{a} denotes the angle of attack between **V** and the molecular axis and ϕ_{a} is the

azimuthal angle of the latter with respect to an axis perpendicular to the scattering plane. For $\mathbf{E}_g || \mathbf{V}$ the approaching atoms attack preferentially the ends of the molecules while for the second field direction side-on attacks prevail.

The experiments were performed at a mean relative translational energy of $E_{tr} = 0.4 \text{ eV}$ with the detector set to a laboratory deflection angle of $\Theta = 64^{\circ}$ in the plane of the two reagent beams. The results are displayed in Fig. 1, together with the nominal kinematic diagram. Plotted is the flux of products for $E_g || V$ and $\bot V$ as a function of time in chronological order. The acquisition time per point was 5 min; the average over all points is indicated by the straight solid line. The effect of the field direction on the signal is very drastic; the product flux rises by a factor of 2.2 if the field is rotated from $\bot V$ to || V. In other words, end-on attacks send more products into the detector than side-on attacks.

To rationalize this huge steric effect we performed a quasiclassical trajectory study. As PES we used Carter and Murrell's⁹ analytic expression based on the *ab initio* points of Chen and Schaefer.⁶ The function had to be modified somewhat to obtain a smooth asymptotic behavior.^{10,11} To simulate the prepared axis distributions we set the initial angular momentum of HF to zero and generate $\cos \gamma_a$ and ϕ_a such that these quantities are distributed according to Eq. (1) or (2). The distribution \tilde{A}_1 destroys the familiar cylindrical symmetry around V of the scattering problem. Thus, deviating from most trajectory calculations, both the polar and azimuthal scattering angles in the center-of-mass (c.m.) frame, ϑ and ϕ , of the molecular products were determined and boxed into equidistant $\Delta\vartheta$ intervals (18°) and $\Delta\phi$ intervals (22.5°).

We have calculated 5000 trajectories for each direction of E_o at a relative translational energy of 0.4 eV. Figure 2 shows the differential cross section for in plane scattering (all trajectories with 67.5° $\leq \phi \leq 112.5^{\circ}$ are accepted) in the c.m. frame. Both histograms exhibit a prominent peak but the position and height of the maxima differ drastically. The integral reaction cross sections are equal within the statistical error and amount to $(7.8 \pm 0.2 \text{ Å}^2)$. As a more detailed analysis shows, the differences are mainly caused by the propensity of the two products to separate in opposite directions along the molecular axis. As for $\mathbf{E}_{p} \perp \mathbf{V}$ the axes stand preferentially perpendicular to the scattering plane, a substantial fraction of products is scattered above or below the plane ($\phi = 90^\circ$), and is thus lost for the in plane flux. In case $E_g || V$ the axes are symmetrically distributed around V and thus the preference for out of plane scattering vanishes. Consequently, more products appear in plane and the peak of the cross section becomes higher.

directions ($E_{\rm tr} = 0.4 \, {\rm eV}, \, \Theta = 64^{\circ}$). The insert illustrates the nominal ki-

asymmetric reactivity of the two ends of HF. Only attacks on the F-end form products. After initiation of the reaction the H atom is ejected along the HF axis into the forward direction of the c.m. frame and the detected LiF into the backward direction.

Figure 3 exhibits the steric effect $S(\vartheta)$ defined here by the ratio of the difference and sum of the histograms (Fig.

FIG. 2. Differential in plane reaction cross section as a function of & calculated for the indicated field directions ($E_{tr} = 0.4 \text{ eV}$).

FIG. 3. Angular dependence of the steric effect $S = (I_{\parallel} - I_{\perp})/(I_{\parallel})$ $+ I_1$) deduced from Fig. 2. The full circle represents the experimental result.

2) as a function of ϑ . The substantial difference in position and height of the maxima leads to an oscillatory behavior where $S(\vartheta)$ ranges from $\approx +0.6$ for backward scattering to ≈ -0.6 for forward scattering. From the data of Fig. 1 we deduce an experimental steric effect of $S_{exp} = 0.38$ which represents roughly $S(\vartheta)$ averaged over the range 105°< ϑ <125°. For comparison S_{exp} is given in Fig. 3 together with the experimental error; the covered ϑ range is indicated by the horizontal bar. Theory predicts correctly the sign of the observed steric effect and overestimates its magnitude by 40%. Measurements concerning the angular distribution of the steric effect are in progress.

Support of this work by the Deutsche Forschungsgemeinschaft (SFB 216, P5) is gratefully acknowledged.

- ¹P. R. Brooks, Science 193, 11 (1976).
- ²R. B. Bernstein, D. R. Herschbach, and R. D. Levine, J. Phys. Chem. 91, 5365 (1987)
- ³S. Stolte, Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University, New York, 1988), Vol. 1, Chap. 25.
- ⁴M. Hoffmeister, R. Schleysing, and H. J. Loesch, J. Phys. Chem. 91, 5441 (1987).
- ⁵H. J. Loesch and A. Remscheid, J. Chem. Phys. 93, 4779 (1990).
- ⁶M. M. L. Chen and H. F. Schaefer III, J. Chem. Phys. 72, 4376 (1980). ⁷M. Hoffmeister, R. Schleysing, F. Stienkemeier, and H. J. Loesch, J.
- Chem. Phys. 90, 3528 (1989). ⁸R. Altkorn, R. N. Zare, and C. H. Greene, Mol. Phys. 55, 1 (1985).
- ⁹S. Carter and J. N. Murrell, Mol. Phys. 41, 567 (1980).
- ¹⁰H. J. Loesch, Chem. Phys. 104, 213 (1985).
- ¹¹H. Zerhau-Dreihöfer, Diplomarbeit, Universität Bielefeld, Germany, 1986.

2.5

E_ || ∛

