189. Arbeiten über Phosphorsäure- und Thiophosphorsäureester mit einem heterocyclischen Substituenten

5. Mitteilung 1)

2-Alkoxy- und 2-Alkylthio-5-chlormethyl-1, 3, 4-thiadiazole, 2-Alkyl-5-chlormethyl-1, 3, 4-oxadiazole und daraus hergestellte Thio- und Dithiophosphorsäure-O, O-dialkyl-S-[(2-alkoxy- und 2-alkylthio-1, 3, 4-thiadiazol-5-yl)-methyl]- bzw. -S-[(2-alkyl-1, 3, 4-oxadiazol-5-yl)-methyl]-ester

von K. Rüfenacht

Forschung Agrarchemikalien, R-1093.4.53, CIBA-GEIGY AG, CH-4002 Basel

(5. VI. 72)

Summary. 2-Alkoxy-5-chloromethyl-1, 3, 4-thiadiazoles are prepared by ring closure of 3-chloroacetyl-thiocarbazic acid O-alkyl esters with concentrated sulfuric acid, 2-alkylthio-5-chloromethyl-1, 3, 4-thiadiazoles directly from dithiocarbazic acid alkylesters with chloroacetylchloride in benzene in a one step synthesis omitting the 3-chloroacetyl-derivatives and 2-alkyl-5-chloromethyl-1, 3, 4-oxadiazoles from 1-chloroacetyl-2-acyl-hydrazines with POCl₃. These three types of chloromethyl heterocycles easily react with salts of thio- and dithiophosphoric acids to form the corresponding O, O-dialkyl-S-[(2-alkoxy- and 2-alkylthio-1, 3, 4-thiadiazol-5-yl)-methyl]- and -S-[(2-alkyl-1, 3, 4-oxadiazol-5-yl)-methyl]-thio- and -dithiophosphates.

Thiadiazole. – Der Ringschluss von 3-Acyl-dithiocarbazinsäure-alkylestern 1 zu 5-substituierten 2-Alkylthio-1,3,4-thiadiazolen 2 durch Wasserabspaltung mittels Schwefelsäure, Polyphosphorsäure oder azeotroper Destillation in Gegenwart katalytischer Mengen von Sulfonsäuren ist mehrfach beschrieben [2]–[5]. Ebenso sind Beispiele von 5-substituierten 2-Alkoxy-1,3,4-thiadiazolen 3 bekannt [6] [7]. Die in der zitierten Literatur aufgeführten Substituenten R' enthalten jedoch keine funktionellen Gruppen, die für weitere Umsetzungen geeignet wären.

Es sind nun einige 2-Alkoxy- und 2-Alkylthio-5-chlormethyl-1,3,4-thiadiazole 7 und 8, deren Chloratom sich beispielsweise mit Salzen von Thio- und Dithiophosphorsäuren umsetzen lässt, hergestellt worden [8]. Dabei verhielten sich Thiocarbazinsäure-O-alkylester 4 und Dithiocarbazinsäure-alkylester 5 als Ausgangsstoffe verschieden²).

Thiocarbazinsäure-O-alkylester 4 gehen mit Chloracetylchlorid unter üblichen Acylierungsbedingungen (in Dioxan/Wasser mit Na-acetat) glatt in 3-Chloracetylthiocarbazinsäure-O-alkylester 6 über (Tab. 1). Diese lassen sich in konzentrierter

^{1) 4.} Mitt., siehe [1].

Schwefelsäure bei 0° zu 2-Alkoxy-5-chlormethyl-1,3,4-thiadiazolen 7 cyclisieren (Tab. 2); das Auftreten von HCl-Gas deutet auf teilweise Zersetzung hin.

Dithiocarbazinsäure-alkylester **5** dagegen liefern unter den gleichen Acylierungsbedingungen mit Chloracetylchlorid keine rein fassbaren Chloracetyl-Derivate, sondern gelbe bis rote ölige Schmieren. Aus diesen können durch Erhitzen auf 75° im Vakuum und Verrühren mit Hydrogencarbonatlösung in geringer Menge 2-Alkylthio-5-chlormethyl-1,3,4-thiadiazole **8** gewonnen werden. Viel besser erhält man **8** jedoch in einer Einstufensynthese direkt aus den Dithiocarbazinsäureestern **5** durch Kochen mit Acetylchlorid in Benzol unter azeotroper Destillation und ohne säurebindendes Mittel (Tab. 3). Dieses einfache Verfahren lässt sich aber nicht auf Thiocarbazinsäure-Oalkylester **4** übertragen.

Unter den 3-Chloracetyl-thiocarbazinsäure-O-alkylestern 6 bildet der Isopropylester beim Ringschluss in Schwefelsäure eine Ausnahme. Die Isopropylgruppe wird

²⁾ Über Thio- und Dithiocarbazinsäure-alkylester siehe [9].

9
4
ϵ
S
7
- 32
14
\boldsymbol{z}
d
Y
é
3
3:
S
.5
6.9
ă
ž
8
2
٠,٠
t.
7
8
et
Ž
2
.6
12
G
Ť
ω
_
ab. 1
7
Ĥ

Summentormet Summentormet		Ι.		The state of the s							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K in b	Ausb. %	smp.	Summentormel	MolGew.	Analyse	in.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	٠.					Ber.			Gef.		
sion (-1.0) $(-1.0$						ت ت	Z	s	C1	z	s
CH ₃ 85 99-101° C ₆ H ₂ ClN ₂ O ₂ S 196,67 18,03 14,24 16,30 18,16 14,05 CH ₃ 37 117-118° C ₆ H ₁ ClN ₂ O ₃ S 220,68 16,98 13.29 13.43 15,22 17,00 13,54 CH ₃ 37 117-118° C ₆ H ₁ ClN ₂ O ₃ S 226,69 13.43 15,36 17,00 13,54 15,50 C ₆ H ₂ ClN ₂ O ₃ S 226,69 13.43 15,36 17,00 13,54 15,50 C ₆ H ₂ ClN ₂ O ₃ S 226,69 13.43 11,64 12.36 14,15 15,71 12,49 100-102° D C ₆ H ₂ ClN ₂ O ₃ S 226,69 15,64 12.36 14,15 15,71 12,49 C ₆ H ₂ ClN ₂ O ₃ S 226,69 15,64 12.36 14,15 15,71 12,49 106-107° D C ₆ H ₂ ClN ₂ O ₃ S 226,69 15,64 12.36 14,15 15,71 12,49 C ₆ H ₂ ClN ₂ O ₃ S 240,72 14,73 11,64 13,32 14,63 11,13 14,13 14,14	CH ₃ C,H,	60 58	147-148°a) 127-128°b)	C4H7CIN2O2S	182,64	19,42	15,33	17,56	19,25	15,13	17,81%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22		133-134°c)	C,H,CIN,O,S	196,67	18,03	14,24	16,30	18,16	14,05	16,50%
CCH2 37 117-118° CCH3 CCH4	C ₃ H ₇ -iso	85	99-101°b)	C,H,,CIN,O,S	210,70	16,83	13,29	15,22	16,52	13,62	15,51%
C(H ₃ 73 100-1002°b) C ₆ H ₁ C(N ₁ O ₃ S 226,69 1564 12.36 14.15 11.74 12.49 (C ₆ H ₁ C(N ₂ O ₃ S) 224,75 14.75 11.64 13.32 14.83 11.55 (C ₆ H ₁ C(N ₂ O ₃ S) 224,75 14.75 11.64 13.32 14.83 11.55 (C ₆ H ₁ C(N ₂ O ₃ S) 224,75 14.75 11.64 13.32 14.83 11.55 (C ₆ H ₁ C(N ₂ O ₃ S) 224,75 14.75 11.64 13.32 14.83 14.83 11.13 (C ₆ H ₁ C(N ₂ O ₃ S) 224,75 14.75 11.64 13.32 14.83 14.83 11.13 (C ₆ H ₁ C(N ₂ O ₃ S) 224,75 14.75 11.64 11.24 (C ₆ H ₂ C(N ₂ O ₃ S) 12.24 (C ₆ H ₂ C(N ₂ O	CH2—CH=CH2	37	117-118°¢)	C,H,CIN,O,S	208,68	16,99	13,43	15,36	17,00	13,54	15,47%
C _H I ₅ 59 95-97° b) C _H I ₂ CIN ₂ O ₃ S 240,72 14,73 11,64 13,32 14,83 11,55 C _H I ₇ (iso) 79 106-107° b) C _H I ₂ CIN ₂ O ₃ S 254,75 13,92 10,99 12,38 14,07 11,13 cholo/Wasser; p) aus Besigester/Petrolathor Tab. 2.2-Alkoxy-5-chlormethyl-1,3,4-thiadiazole 7 Analysen CGr. CGr. N Ausb. % Sdp./Torr Summenformel Mol-Gew. Analysen GGr. CGr. N 43 77 (0,02a) C _H GIN ₈ O ₂ S 164,62 21,53 17,99 13,59 115,89 43 77 (0,001 C _H CIN ₈ O ₂ S 164,62 21,58 17,09 13,59 115,89 <	CH2CH2OCH3	73	100-102° b)	C,HICIN,O,S	226,69	15,64	12,36	14,15	15,71	12,49	14,08%
C ₆ H ₇ -(iso) 79 106-107° b) C ₉ H ₁₈ CIN ₂ O ₃ S 254,75 13,92 10,99 12.58 14,07 11,13 cohol/Wasser; b) aus Methanol/Wasser; c) aus Essigester/Petrolather Tab. 2. 2-Alkoxy-5-chlormethyl-1,3,4-thiadiazole 7 7 Analysen 6ef. 6ef. Ausb. % Sdp./Torr Summenformel MolGew. Analysen 6ef. CI N CI N CH ₈ Torrellation C ₈ H ₂ CIN ₈ OS 164,62 21,55 17,03 19,49 21,38 16,87 S5 71-72°(0.01 C ₈ H ₂ CIN ₈ OS 178,66 19,86 15,68 15,83 16,87 Strick kristallisterend, Smp. ca. 36°. Tab. 3. 2-Alkythio-5-chlormethyl-7,2,4-thiadiazole 8 Tab. 3. 2-Alkythio-5-chlormethyl-7,2,4-thiadiazole 8 Tab. 3. 3. 4-thylthio-5-chlormethyl-7,2,4-thiadiazole 8 CI N Ausb. % Smp. oder Summenformel MolGew. Analysen Gcf. N Attable Smp. 70- 71°*0, C ₄ H ₅ CIN ₈ S ₂ 180,69 19,63 15,51 33,49 19,52 15,34 Attable Grane CH ₂ CH ₂ CIN	CH2CH2OC2H5	59	62- 97° b)	$C_7H_{13}CIN_2O_3S$	240,72	14,73	11,64	13,32	14,83	11,55	13,17%
Ausb. % Sdp./Torr Summenforme MolGew. Analysen Cal. N Scalar Cal. N Scalar Cal. N Scalar Cal. N Scalar Cal. Scalar	$\mathrm{CH_2CH_2OC_3H_7-(iso)}$	62	106-107°b)	$C_8H_{16}CIN_2O_3S$	254,75	13,92	10,99	12,58	14,07	11,13	12,49%
Ausb. % Sdp./Torr Summenformel MolGew. Analysen Ger. Summenformel MolGew. Analysen Ger. Summenformel MolGew. Analysen Ger. Ger. Sp. 75° $^{\prime}$ 0,022° $^{\prime}$ 0,022° $^{\prime}$ 0,010 $^{\prime}$ 2,4 $^{\prime}$ 5,ClN $^{\prime}$ 20S 164,62 21,55 17,03 19,49 21,38 16,87 77 98° $^{\prime}$ 0,001 $^{\prime}$ 2,6 $^{\prime}$ 4,ClN $^{\prime}$ 20S 176,68 17,96 17,95 19,52 15,83 11,00 13,42 15,37 17,09 13,59 11,00 13,42 15,87 17,09 13,59 11,00 13,59 17,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 13,59 11,00 12,90,00 Cer. H ₂ ClN $^{\prime}$ 20S, $^{\prime}$ 3 180,69 19,63 11,10 13,51 11,10 13,51 11,10 13,51 11,10 13,51 11,10 13,51 11,10 13,51 11,10 13,51 11,10 13,51 11,10 1	a) aus Alkohol/Wasse	l a	thanol/Wasser; c)	aus Essigester/Petr	oläther						
Ausb. % Sdp./Torr Summenformel MolGew. Analysen Her. Gef. Ber. Gef. Ber. Gef. C1 N S C1 N C2H ₅ ClN ₂ O24) C ₄ H ₅ ClN ₂ OS 164,62 21,55 17,03 19,49 21,38 16,87 S5 71-72°(0,01 C ₅ H ₇ ClN ₂ OS 178,66 19,86 15,68 17,95 19,52 15,83 Hich kristallisierend, Smp. ca. 36°. Tab. 3. 2-Alkylthio-5-chlormethyl-1, 2, 4-thiadiazole 8 Ausb. % Smp. oder Summenformel MolGew. Analysen Sdp./Torr Sdp./Torr Sdp./Torr C1 N S C1 N C2Gf. C3 N C4H ₅ ClN ₂ S ₂ 180,69 19,63 19,51 19,72 19,71 14,36 C1 N S C1 N C2H ₂ 105-107°(0,02 C ₅ H ₇ ClN ₂ S ₂ 206,73 17,16 13,55 31,03 17,10 13,45 Hallislert aus Methanol			Tab	. 2. 2-Alkoxy-5-chlo	rmethyl-1, 3, 4-th	iadiazole 7					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R in 7	Ausb. %	Sdp./Torr	Summenformel	MolGew.	Analyse	ue				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Ber.			Gef.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						១	Z	s	5	z	œ
CH ₃ 77 98°/0,001 C ₆ H ₉ CIN ₂ O ₂ S 208,68 17,00 13,42 15,37 17,09 13,59 tlich kristallisierend, Smp. ca. 36°. Tab. 3. 2-Alkythio-5-chlormethyl-1,2,4-thiadiazole 8 Ausb. % Smp. oder Summenformel MolGew. Analysen Sdp./Torr Sdp./Torr 44 Smp. 70- 71°a) C ₄ H ₅ CIN ₂ S ₂ 180,69 19,63 15,51 35,49 19,52 15,34 63 90- 91°/0,02 C ₆ H ₇ CIN ₂ S ₂ 194,71 18,23 14,40 32,95 17,71 14,36 77 105-107°/0,02 C ₆ H ₇ CIN ₂ S ₂ 206,73 17,16 13,55 31,03 17,10 13,45 ECH ₂ 64 102-103°/0,01 C ₆ H ₇ CIN ₂ S ₂ 206,73 17,16 13,55 31,03 17,10 13,45	CH ₃	43	75°/0,02a)	C4H5CIN2OS	164,62	21,55	17,03	19,49	21,38	16,87	19,44%
tlich kristallisierend, Smp. ca. 36°. Tab. 3. 2-Alkylthio-5-cklormetkyl-1,2,4-thiadiazole 8 Ausb. % Smp. oder Summenformel MolGew. Analysen Sdp./Torr 44 Smp. 70- 71°*) $C_4H_5CIN_2S_2$ C_1 N S C1 N S C	CH2CH2OCH3	77	98°/0,001	$C_6H_9CIN_2O_3S$	208,68	17,00	13,42	15,37	17,09	13,59	15,39%
Ausb. % Smp. oder Summenformel MolGew. Analysen Analysen Sdp./Torr Summenformel MolGew. Analysen Ber. Gef. Cl N Sdp./Torr Gef. Cl N Sup. 70–71°a) $C_4H_5CIN_2S_2$ 180,69 19,63 15,51 35,49 19,52 15,34 63 90–91°/0,02 $C_6H_7CIN_2S_2$ 180,74 17,00 13,43 30,74 17,22 13,47 14,36 77 105–107°/0,02 $C_6H_7CIN_2S_2$ 206,73 17,16 13,55 31,03 17,10 13,45 13,45 allisiert aus Methanol	a) gelegentlich krista	llisierend, Sı	np. ca. 36°.								
Ausb. % Smp. oder Summenformel MolGew. Analysen Sdp./Torr At Smp. 70- 71°a) C ₄ H ₅ CIN ₂ S ₂ 180,69 19,63 15,51 35,49 19,52 15,34 angleset aus Methanol Analysen Ber. Gcf. 18,049 19,63 15,51 35,49 19,52 15,34 14,40 32,95 17,71 14,36 19,47 11,20 13,45 17,70 14,36 17,70 13,45 17,70 13,45 17,10 14,40 17,10 17,40 1			Tab. 3	3. 2-Alkylthio-5-chlo	rmethyl-1, 2, 4-th	iadiazole 8					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R in 8	Ausb. %	Smp. oder	Summenformel	MolGew.	Analyse	ue				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Sdp./Torr			Ber.			Gef.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						5	Z	s	ご	z	S
63 90–91°/0,02 C_bH_r CIN ₂ S ₂ 194,71 18,23 14,40 32,95 17,71 14,36 77 105–107°/0,02 C_bH_b CIN ₂ S ₂ 208,74 17,00 13,43 30,74 17,22 13,47 = CH ₂ 64 102–103°/0,01 C_bH_r CIN ₂ S ₂ 206,73 17,16 13,55 31,03 17,10 13,45 tallisiert aus Methanol	CH ₃	44	70-		180,69	19,63	15,51	35,49	19,52	15,34	35,65%
= CH ₂ 64 $102-103^{\circ}/0,02$ $C_{\rm e}H_{\rm e}CIN_{\rm s}S_{\rm s}$ $206,73$ $17,16$ $13,55$ $31,03$ $17,10$ $13,45$ $17,16$ $13,55$ $31,03$ $17,10$ $13,45$ tallisiert aus Methanol	C_2H_5	63	90- 91°/0,02	$C_5H_7CIN_2S_2$	194,71	18,23	14,40	32,95	17,71	14,36	33,41%
anol	C_3H_7 -1S0 CH_2 — $CH = CH_2$: 4	$105-107^{\circ}/0.02$ $102-103^{\circ}/0.01$	$C_6H_9CIN_2S_2$ $C_6H_7CIN_2S_2$	208,74 206,73	17,16	13,43 13,55	30,74 31,03	17,22	13,4 <i>i</i> 13,45	30,81% $31,29%$
	a) umkristallisiert au	s Methanol									

wahrscheinlich als Propen abgespalten. Das nicht rein erhaltene Ringschlussprodukt dürfte 5-Chlormethyl-1,3,4-thiadiazol-2(3H)-on 9 sein. Seine Weiterumsetzung mit Kalium-O,O-diäthyl-dithiophosphat gab den Dithiophosphorsäureester 10.

Oxadiazole. – Eine der bekannten Methoden zur Herstellung von 1,3,4-Oxadiazolen [10] lässt sich auch auf 1-Chloracetyl-2-acyl-hydrazine 11 (Tab. 4) anwenden: mit POCl₃ entstehen 2-Alkyl-5-chlormethyl-1,3,4-oxadiazole 12 [8] (Tab. 4); deren Chlorgehalt weicht zum Teil etwas von den theoretischen Werten ab.

Tab. 4. 1-Chloracetyl-2-acyl-hydrazine 11

R in 11	Ausb.	Smp.	Summenformel	Mol	Analys	sen		
	%			Gew.	Ber.		Gef.	
					Cl	N	Cl	N
CH ₃	63	156-157°a)	C4H7ClN2O2	150,58	23,55	18,61	23,71	18,65%
C_2H_5	52	164-165° b)	$C_5H_9ClN_2O_2$	164,16	21,54	17,02	22,01	17,10%
C_3H_7 -n	60	154-155° c)	$C_6H_{11}ClN_2O_2$	178,64	19,85	15,68	20,13	15,71%
C ₃ H ₂ -iso	40	169-170°d)	$C_6H_{11}ClN_2O_2$	178,64	19,85	15,68	19,73	15,89%
C_4H_9 -iso	26	172-173° c)	$C_7H_{13}CIN_2O_2$	192,66	18,41	14,55	18,63	14,76%

a) aus Wasser/Alkohol; b) aus Methanol/Wasser; c) aus Wasser; d) aus Methanol

Tab. 5. 2-Alkyl-5-chlormethyl-1, 3, 4-oxadiazole 12

R in 12	Ausb.	Sdp./Torr	Summenformel	Mol	Analys	sen		
	%			Gew.	Ber.		Gef.	
					Cl	N	Cl	N
CH ₃	53	50°/0.01	C ₄ H ₅ ClN ₂ O	132,56	26,76	21,14	26,71	21,29%
C_2H_5	58	54°/0,001	C ₅ H ₂ ClN ₂ O	146,59	24,19	19,12	25,17	19,12%
C_2H_2 -n	70	74-76°/0,01	C ₆ H ₉ ClN ₂ O	160,61	22,09	17,45	20,95	17,52%
C ₂ H ₂ -iso	76	60°/0,03	C ₆ H ₉ ClN ₂ O	160,61	22,09	17,45	21,67	17,22%
C_4H_9 -iso	70	69-71°/0,002	$C_7^{\prime}H_{11}^{\prime}ClN_2^{\prime}O$	174,64	20,32	16,05	19,76	16,09%

Thio- und Dithiophosphorsäureester-Derivate. – Die durch Umsetzung der Chlormethylverbindungen **7**, **8** und **12** mit Salzen von Dialkyl-thio- und -dithiophosphorsäuren gewonnenen Ester **13** (Tab. 6) und **14** (Tab. 7^3) (X und Y = O oder S) sind strukturell verwandt mit den bekannten, insektizid und akarizid wirksamen [(5-Alkoxy bzw. -alkylthio-1,3,4-thiadiazol-2(3H)-on-3-yl)-methyl]-thio- und -dithiophosphaten **15** [13] (X und Y = O oder S) bzw. den [(5-Alkyl-1,3,4-oxadiazol-2(3H)-on-3-yl)-methyl]-thio- und -dithiophosphaten **16** [14] (X = O oder S). Sie erreichen

³⁾ Verbindungen dieser Art sind neuerdings in zwei Deutschen Offenlegungsschriften beschrieben [11] [12].

Tab. 6. Thio- und Dithiophosphorsaure-O, O-dialkyl-S-[(2-alkoxy- bzw. 2-alkylthio-1,3,4-thiadiazol-5-yl)-methyl]-ester 13

Alkyl	×	YR	MolDest.	Summenformel	MolGew.	Analysen ^a)	ena)					Akute Tox.
in 13			Sdp./Torr			Ber.			Gef.			Ratte p.o. DL ₅₀ in μ l
						Z	4	s	Z	Ъ	S	3
CH,	s	OCH,	Zers.	C,HIN,O,PS,	286,35	1	10,82		! !	10,44	%	54
$C_{ m H_s}$	S	OCH,	$120^{\circ}/0,003$	$C_8H_{15}N_2O_3PS_3$	314,40	8,91	9,85	30,60	9,13	08'6	30,66%	9
CH.	0	OCH ₃	Zers.	CeH11N2O4PS2	270,28	1	11,46	1	ŀ	11,27	% -	1
C_2H_5	0	OCH,	$135^{\circ}/0,03$	$\mathrm{C_8H_{15}N_2O_4PS_2}$	298,33	6,39	10,38	21,50	9,16	10,51	21,58%	4
CH,	S	$OC_3H_5^2$	Zers.	C,H13N2O3PS3	300,37	1	10,31	1	ı	11,35	%	129
C_2H_5	S	OC,H,	$110^{\circ}/0,005$	C,H17N2O3PS3	328,43	8,53	9,43	29,29	8,60	9,52	29,17%	4
CH.	0	OC,H,	Zers.	C,H13N2O4PS2	284,30	1	10,90	1	i	10,14	% -	I
$C_{\mathbf{a}}H_{5}$	0	OC,H,	Zers.	C,HTNOTPS	312,36	8,97	9,92	1	8,93	9,54	% -	5
ĊĦ,	S	OC,HOCH,	Zers.	C ₈ H ₁₅ N ₂ O ₄ PS ₃	330,46	8,48	9,39	29,11	8,00	9,44	28,86%	62
$C_{ m oH_5}$	s	OC,HOCH,	$145^{\circ}/0,001$	$C_{10}H_{19}N_2O_4PS_3$	358,51	7,81	8,65	26,83	7,73	8,63	26,90%	7
C_2H_5	0	OC,HOCH,	$145^{\circ}/0,001$	C10H19N2O5PS2	342,44	8,18	90'6	18,73	8,26	8,77	18,45%	4
CH,	S	SCH_3	Zers.	$C_6H_{11}N_2O_2PS_4$	302,41	1	10,24	ı	ı	10,89	% -	175
$C_{\mathbf{h}}$	S	SCH_3	$135^{\circ}/0,005$	$C_8H_{15}N_2O_2PS_4$	330,46	8,48	9,37	38,80	8,63	9,52	38,61%	45
C,H,	0	SCH_3	$135^{\circ}/0,005$	$C_8H_{15}N_2O_3PS_3$	314,46	8,91	9,85	30,59	9,01	6,67	29,50%	48
$_{ m CH_3}$	S	SC_2H_5	Zers.	$C_7H_{13}N_2O_2PS_4$	316,50	1	9,81	1	ı	10,35	% -	453
C_2H_5	S	SC_2H_5	$150^{\circ}/0,003$	$C_9H_{17}N_2O_2PS_4$	344,55	8,13	9,01	37,23	7,76	8,51	37,15%	48
$_{ m CH_3}$	0	$\mathrm{SC_{2}H_{5}^{\circ}}$	Zers.	$C_7H_{13}N_2O_3PS_3$	300,34	ı	10,33	1	ı	9,47	% -	129
$C_{\mathbf{H}_{\mathbf{r}}}$	0	$SC_{2}H_{5}$	Zers.	C,H17N2O3PS3	328,48	8,53	9,45	29,29	8,34	8,93	29,28%	38
ĊĦ,	S	SC_3H_7 -iso	Zers.	$C_8H_{15}N_9O_2PS_4$	330,52	1	9,39	ĺ	i	9,83	% -	375
$C_{ m sH_{ m s}}$	s	SC_3H_7 -iso	Zers.	C,H,BN,O,PS	358,58	7,81	8,65	35,78	7,71	8,53	35,48%	54
$C_{\mathrm{H}_{5}}$	0	SC ₂ H,-iso	Zers.	C, H, B, N, O, PS,	342,51	8,18	90'6	28,09	8,25	8,77	27,27%	18
CH,	S	SCH,CH=CH,	I ₂ Zers.	$C_8H_{13}N_2O_2PS_4$	328,51	ı	9,45	ì	ı	9,75	% -	268
C_2H_5	S	SCH2CH=CH2	I ₂ Zers.	$\mathrm{C_{10}H_{17}N_2O_2PS_4}$	356,56	7,86	8,71	35,98	7,98	8,27	36,12%	44
									-			

a) bei destillierbaren Verbindungen des Destillats, bei den andern des Rohproduktes

Tab. 7. Thio- und Dithiophosphorsäure-O, O-dialkyl-S-[(2-alkyl-1, 3, 4-oxadiazol-5-yl)-methyl]-ester 14

Alkyl	×	X	MOL-Dest.	Summentormet		Andiyscii				i	i	
ın 14			Sdp./lorr			Ber.			Gef.			Ratte p.o. DLra in ul
ļ						Z	д	s	Z	Ъ	S	09-
CH ₃	S	CH3	Zers.	$C_6H_{11}N_2O_3PS_2$	254,28	1	12,18	ſ	J	12,71	% -	13
C_2H_5	s	CH_3	$120^{\circ}/0,01$	$\mathrm{C_8H_{15}N_2O_3PS_2}$	282,33	9,92	10,97	22,71	10,08	10,91	22,55%	
C_2H_5	0	CH_3	$115^{\circ}/0,02$	$C_8H_{15}N_2O_4PS$	266,27	10,52	11,63	12,04	10,68	11,72	12,24%	9,0
CH_3	S	C_2H_5	$130^{\circ}/0,005$	$\mathrm{C_7H_{13}N_2O_3PS_2}$	268,36	10,44	11,57	23,90	10,39	11,24	24,16%	27
C_2H_5	s	C_2H_5	$140^{\circ}/0,005$	$C_9H_{17}N_2O_3PS_2$	296,42	9,45	10,47	21,63	9,27	10,25	21,50%	2
C_2H_5	0	C_2H_5	$140^{\circ}/0,005$	$C_9H_{17}N_2O_4PS$	280,35	10,00	11,07	11,44	82'6	10,90	11,56%	2
CH_3	S	C_3H_{7} -n	Zers.	$\mathrm{C_8H_{15}N_2O_3PS_2}$	282,33	ı	10,97	ł	t	11,41	% -	54
C_2H_5	s	C_3H_{7} -n	140°/0,005	$\mathrm{C_{10}H_{19}N_2O_3PS_2}$	310,38	9,03	86,6	20,66	9,04	9,93	20,90%	6
C_2H_5	0	C_3H_{7} -n	$135^{\circ}/0,005$	$\mathrm{C_{10}H_{19}N_2O_4PS}$	294,38	9,52	10,55	10,90	9,37	10,04	10,58%	īC
CH_3	S	C_3H_7 -iso	$135^{\circ}/0,01$	$\mathrm{C_8H_{15}N_2O_3PS_2}$	282,33	9,93	10,97	22,71	66'6	11,05	22,85%	09
C_2H_5	S	C_3H_7 -iso	130°/0,005	$\mathrm{C_{10}H_{19}N_2O_3PS_2}$	310,68	9,03	86,6	20,66	6,07	9,85	20,41%	13
CH_3	S	C_4H_9 -iso	Zers.	$C_9H_{17}N_2O_3PS_2$	296,42	ļ	10,47	ł	ı	10,04	% -	222
C_2H_5	S	C_4H_9 -iso	$140^{\circ}/0,002$	$\mathrm{C}_{11}\mathrm{H}_{21}\mathrm{N}_{2}\mathrm{O}_{3}\mathrm{PS}_{2}$	324,47	8,64	9,57	19,76	8,76	9,34	19,54%	11
C_2H_5	0	C_4H_9 -iso	$140^{\circ}/0,002$	$\mathrm{C_{I1}H_{21}N_2O_4PS}$	308,40	60'6	10,06	10,40	8,76	6,97	10,46%	9

indessen entweder deren Wirksamkeit nicht oder weisen eine für praktische Schädlingsbekämpfungszwecke zu hohe Warmblütertoxizität auf. Sie stellen Öle dar, die sich oft nicht unzersetzt destillieren lassen.

Die Mikroanalysen stammen aus unserem Mikroanalytischen Laboratorium (Dr. H. Wagner). Für zuverlässige experimentelle Mitarbeit danke ich Herrn H. Brunner.

Experimenteller Teil

Die Smp. wurden auf dem Kofler-Block bestimmt und sind nicht korrigiert. Mikroanalysen werden hier nur aufgeführt, sofern sie nicht in den Tab. 1-7 enthalten sind.

1. 3-Chloracetyl-thiocarbazinsäure-O-alkylester 6 (Tab. 1). – Eine Lösung von 1 Mol Thiocarbazinsäure-O-alkylester [9] in 250 ml Dioxan wurde mit einer Lösung von 175 g (1,28 Mol) kristallisiertem Na-acetat in 250 ml Wasser versetzt. Bei 5–15° tropfte man unter starkem Rühren 113 g (1 Mol) Chloracetylchlorid zu. Nach 1 Std. Rühren bei ca. 10° wurden 500 ml Wasser zugesetzt, die ausgeschiedenen Kristalle abfiltriert, mit Eiswasser gewaschen, getrocknet und umkristallisiert.

2. 1-Chloracetyl-2-acyl-hydrazine 11 (Tab. 4). – 1-Chloracetyl-2-acetyl-hydrazin (11, $R = CH_3$): Zu einer Lösung von 296 g (4 Mol) Acethydrazid und 250 g (2,35 Mol) Soda in 1000 ml Wasser tropfte man unter starkem Rühren bei -5 bis 5° 480 g (4,25 Mol) Chloracetylchlorid. Nach 1 Std. Rühren bei Raumtemp. wurde abfiltriert, scharf abgepresst und ohne Auswaschen direkt aus 500 ml Wasser/1000 ml Alkohol umkristallisiert.

Alle andern 1-Chloracetyl-2-acyl-hydrazine der Tab. 4 wurden analog, gegebenenfalls in einem grösseren Wasservolumen hergestellt. Statt Soda konnte ebensogut Na-acetat oder NaOH verwendet werden. Die Kristalle wurden abfiltriert, mit Eiswasser gewaschen, getrocknet und umkristallisiert.

3. 2-Alkoxy-5-chlormethyl-1,3,4-thiadiazole 7 (Tab. 2). — 2-Methoxy-Verbindung: In 100 ml konzentrierte Schwefelsäure wurden bei 0° 91 g (0,5 Mol) fein pulverisierter 3-Chloracetyl-thiocarbazinsäure-O-methylester eingetragen. Nach 1 Std. Rühren bei 0° wurde auf 200 g Eis gegossen und ausgeäthert. Die Ätherlösung wurde mehrmals mit gesättigter Kochsalzlösung gewaschen, getrocknet und abdestilliert. Der Rückstand wurde im Hochvakuum fraktioniert.

Zur Herstellung der andern 2-Alkoxy-5-chlormethyl-1, 3, 4-thiadiazole wurden für einen 0,5-Mol-Ansatz 200 ml Schwefelsäure und 500 g Eis verwendet. Bei der Äthoxy-Verbindung wurde die Ätherlösung mit 10proz. Sodalösung gewaschen. Bei der (2'-Methoxy)-äthoxy-Verbindung wurde vor dem Ausäthern mit festem Natriumhydrogencarbonat neutralisiert.

4. 2-Alkylthio-5-chlormethyl-1,3,4-thiadiazole 8 (Tab. 3). — Über den 3-Chloracetyl-dithiocarbazinsäure-methylester: 122 g (1 Mol) Dithiocarbazinsäure-methylester [9] wurden analog 1. in Dioxan/
Wasser mit Na-acetat und Chloracetylchlorid umgesetzt. Bei Zusatz von Wasser schied sich ein
gelbrotes Öl ab. Es wurde durch Ausäthern isoliert (86 g) und 3 Std. im Wasserstrahlvakuum auf
75° erhitzt. Die beim Abkühlen feste Masse wurde mit 200 ml 10proz. Natriumhydrogencarbonatlösung zerrieben und verrührt, das Unlösliche abfiltriert und zweimal aus Methanol umkristallisiert. 50 g 2-Methylthio-5-chlormethyl-1,3,4-thiadiazol, Smp. 69–70°.

Direkt: Zu einer Suspension oder Lösung von 1 Mol Dithiocarbazinsäurealkylester [9] in 750 ml wasserfreiem Benzol wurden bei 10–30° rasch 125 g (1,1 Mol) Chloracetylchlorid getropft. Das

Gemisch kochte man 1 Std. kräftig am Wasserabscheider. Dann wurde mit Äther verdünnt, mit Natriumhydrogencarbonatlösung und mit Wasser gewaschen, getrocknet und die Lösungsmittel abdestilliert. Die kristalline Methylthio-Verbindung wurde aus Methanol umkristallisiert, die andern, öligen Alkylthio-Verbindungen im Hochvakuum destilliert.

5. 2-Alkyl-5-chlormethyl-1,3,4-oxadiazole 12 (Tab. 5). – 2-Methyl-5-chlormethyl-1,3,4-oxadiazol (12, R = CH₃): 150 g (1 Mol) 1-Chloracetyl-2-acetyl-hydrazin wurden in 500 g POCl₃ eingetragen. Beim Erwärmen erfolgte bei ca. 80° eine spontane Reaktion. Anschliessend wurde 1 /₂ Std. am Rückfluss gekocht (110–115°), überschüssiges POCl₃ im Vakuum bei 70° abdestilliert und der Rückstand rasch im Hochvakuum (70°/1 Torr) destilliert. Das Destillat (83 g) wurde in 300 ml Äther gelöst, die Ätherphase mit 10proz. Sodalösung und mit gesättigter Kochsalzlösung gewaschen, getrocknet und der Äther abdestilliert. Der Rückstand wurde im Hochvakuum fraktioniert.

Bei den übrigen 2-Alkyl-5-chlormethyl-1, 3, 4-oxadiazolen der Tab. 5 war nur eine schwache oder gar keine Spontanreaktion mit POCl₃ zu beobachten. Man kochte 1 Std. am Rückfluss, destillierte überschüssiges POCl₃ ab und goss auf Eis. Dann wurde ausgeäthert, die Ätherphase gewaschen, getrocknet und eingedampft und der Rückstand im Hochvakuum fraktioniert.

6. Dithiophosphorsäure-O, O-diäthyl-S-[(1,3,4-thiadiazol-2(3H)-on-5-yl)-methyl]-ester 10 aus 3-Chloracetyl-thiocarbazinsäure-O-isopropylester über 5-Chlormethyl-1,3,4-thiadiazol-2(3H)-on 9: 210 g (1 Mol) 3-Chloracetyl-thiocarbazinsäure-O-isopropylester wurden bei 0° in 450 ml konz. Schwefelsäure eingetragen. Nach 1 Std. Rühren bei 0° goss man auf Eis, ätherte aus, wusch die Ätherphase neutral, trocknete und dampfte ein. Aus dem Rückstand (62 g) liessen sich bei 124–127°/0,6 Torr 20 g kristallin erstarrendes Destillat gewinnen. Dieses wurde mit 25 g K-diäthyldithiophosphat und 100 ml Aceton über Nacht gerührt. Nach Abdampſen des Acetons versetzte man mit Wasser und isolierte durch Ausäthern 32 g blassgelbes Öl. Eine Probe wurde bei 140°/0.03 Torr molekulardestilliert.

 $C_7H_{13}N_2O_3PS_3$ (300,37) Ber. N 9,33 P 10,31 S 32,02% Gef. N 9,58 P 10,44 S 31,98%

7. Thio- und Dithiophosphorsäure-O, O-dialkyl-S-[(2-alkoxy- und 2-alkylthio-1,3,4-thiadiazol-5-yl)-methyl]-ester 13 und -S-[(2-alkyl-1,3,4-oxadiazol-5-yl)-methyl]-ester 14 (Tab. 6 und 7): 0,2 Mol 2-Alkoxy- oder 2-Alkylthio-5-chlormethyl-1,3,4-thiadiazol oder 2-Alkyl-5-chlormethyl-1,3,4-oxadiazol wurden mit 0,22 Mol Kalium- oder Ammonium-O, O-dialkyldithiophosphat in 200 ml Aceton entweder 4 Std. bei 30° oder 16 Std. bei Raumtemp. bzw. mit 0,22 Mol Ammonium-O, O-dialkyl-thiophosphat 6 Std. bei 60° umgesetzt. Nach Abdestillieren des Acetons versetzte man mit Wasser, ätherte aus, wusch die Ätherphase neutral, trocknete und destillierte ab. Proben der Rückstände wurden, wenn möglich, molckulardestilliert.

LITERATURVERZEICHNIS

- [1] K. Rüfenacht, Helv. 55, 1187 (1972).
- [2] Kiichi Fujii, Hiroshi Yoshikawa & Masaharu Yuasa, J. pharm. Soc. Japan 74, 1056 (1954); Chem. Abstr. 49, 11592g (1955).
- [3] R. W. Young & K. H. Wood, J. Amer. chem. Soc. 77, 400 (1955).
- [4] R. W. Young, American Cyanamid Co., US Patent 2744908 (1956).
- [5] G. F. Duffin, D. J. Fry & J. D. Kendall, Ilford Ltd., Britisches Patent 785939 (1957).
- [6] B. Holmberg, Arkiv Kemi, Mineral. Geol. 25 A, No. 18 (1947); Chem. Abstr. 42, 5918i (1948).
- [7] J. Wangel, Arkiv Kemi 1, 431 (1950); Chem. Abstr. 44, 6818d (1950).
- [8] K. Rüfenacht, J. R. Geigy AG., Französisches Patent 1373290 (1964).
- [9] K. Rüfenacht, Helv. 55, 1178 (1972).
- [10] L. C. Behr, «1,3,4-Oxadiazoles», Kapitel X (p. 263) von «The Chemistry of Heterocyclic Compounds», Vol. 17 (Five and Six Membered Compounds with Nitrogen and Oxygen), Interscience Publ. 1962.
- [11] H. Adolphi, H. Eilingsfeld & M. Patsch, Badische Anilin- & Soda-Fabrik AG, Deutsche Offenlegungsschrift 1942993 (1971).
- [12] H. Mildenberger, G. Stähler & L. Emmel, Farbwerke Hoechst AG, Deutsche Offenlegungsschrift 1963672 (1971).
- [13] K. Rüfenacht, J. R. Geigy AG, Schweizer Patent 394696 (1965).
- [14] K. Rüfenacht, J. R. Geigy AG, Schweizer Patente 392521 und 395637 (1965).