= CHEMISTRY =

Catalytic Isomerization of Substituted Vinylcyclopropanes

G. Z. Raskil'dina^{*a*,*}, Yu. G. Borisova^{*a*}, A. R. Davletshin^{*b*}, and S. S. Zlotskii^{*a*}

Presented by Academician A.A. Berlin April 12, 2019

Received February 19, 2019

Abstract—The catalytic isomerization of substituted vinyl-*gem*-dichlorocyclopropanes in the presence of a series of zeolite catalysts has been studied. It has been shown that substituted *gem*-dichlorocyclopentenes are the sole reaction products. The influence of a number of factors (the type of catalyst, temperature, and reaction time) on the yield of isomerization products has been investigated.

DOI: 10.1134/S0012500819070115

The reaction of dichlorocarbene with industrial dienes results in vinyl-*gem*-dichlorocyclopropanes in high yields; these compounds are widely used in the synthesis of reagents, oligomers, and polymers [1-5].

In this work, we accomplished for the first time the catalytic isomerization of mono-dichlorocarbenylated olefins 1a-1d into the corresponding *gem*-dichlorocy-clopropentenes 2a-2d.

Vinyl-gem-dichlorocyclopropanes are known to undergo partial or complete dehydrochlorination at high temperatures (450–550°C), reaction products contain small amounts ($\leq 20\%$) of gem-dichlorocyclopropentenes, which are isomeric to the initial compounds [6].

To accomplish the isomerization of vinyl-gemdichlorocyclopropanes 1a-1d, we employed wellknown domestic zeolite SAPO-34 [7], which is used in industry for alkane and alkene reforming.

It was found that the catalytic isomerization of compounds 1a-1d at $180-280^{\circ}C$ for 1 h leads to the target cyclopentenes 2a-2d in 10-95% yield (selectivity $\ge 95\%$) (Scheme 1).

No transformation of compounds 1a-1d was observed even at $T = 280^{\circ}$ C in the presence of silicon oxide inert under these conditions.

Reaction products contain no 5,5-dichloro derivatives isomeric to cyclopentenes 2a-2d. We explain this fact by the lower strength of the R³C-CCl₂ bond (42– 43 kcal/mol) as compared to the R³C-CR¹R² bond (49–50 kcal/mol) in the cyclopropane moiety.¹ Judge by the yield of compounds 2a-2d, 2,2disubstituted olefins **1b** and **1c** are close in activity to each other and superior to 2-mono derivatives **1a** and **1d** (Fig. 1).

By the example of olefin 1c, we found that high yield ($\geq 90\%$) is achieved at 280°C for 1 h and at 230°C for 1.5 h (Table 1).

We revealed that other industrial zeolite reforming catalysts HY [8] and Tseokar-600 [9] also catalyze isomerization of olefins 1a-1d at 280°C, with zeolite HY being equal to SAPO-34, while the yields of compounds 2a-2d in the presence of Tseokar-600 are by factor 1.2–1.5 lower (Fig. 2).

The low efficiency of Tseokar-600 catalyst is likely to be due to its low specific surface $(320 \text{ m}^2/\text{g})$ as compared with SAPO-34 (630 m²/g) and HY (600 m²/g). The presence of Pt atoms on the surface of Tseokar-600 has no effect on the isomerization process.

Thus, the heterogeneous catalytic isomerization of vinyl-*gem*-dichlorocyclopropanes is convenient method for the selective preparation of gem-dichloro-cyclopropentenes.

EXPERIMENTAL

Catalysts used in the work were zeolites SAPO-34 (produced at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences), HY, and Tseokar-600 (manufactured in the Salavat Catalyst

 Table 1. Effect of reaction time on the yield of cyclopentene

 2c in the presence of SAPO-34 catalyst

Contact time, h	Yield (%)			
	180°C	230°C	280°C	
0.5	22	45	80	
1	38	65	95	
1.5	70	90	99	

¹ Bond strength was calculated by the M06-2X/MG3S method [Zhao, Y. and Truhlar, D.G., *J. Chem. Phys.* 2006, vol. 125, no. 19, p. 194101. https://doi.org/10.1063/1.2370993].

^aUfa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, 450062 Russia ^bInstitute of Oil Chemical Processing, Ufa, 450062 Russia * e-mail: graskildina444@mail.ru

Fig. 1. Catalytic isomerization of substituted vinylcyclopropanes 1a-1d in the presence of SAPO-34 catalyst, contact time 1 h.

Factory, Ltd.). Prior to use, all zeolites were calcined in nitrogen flow at 550°C for 5 h.

Vinyl-gem-dichlorocyclopropanes **1a-1d** used in the work were obtained by the known procedures

Table 2. Characteristics of used catalysts [7, 9, 10]

Fig. 2. Catalytic isomerization of substituted vinylcyclopropanes 1a-1d in the presence of different catalysts, contact time 1 h, $t = 280^{\circ}$ C.

using chloroform, 50% alkali solution, and Katamin AB phase transfer catalyst [11].

¹H and ¹³C NMR spectra were recorded on a Bruker AM-500 spectrometer operating at 500 and

			-				
Catalysts	SiO ₂ /Al ₂ O ₃ , zeolite modulus	Unit cell size, nm	Acidity, meq, H ⁺ /g	Na ₂ O, %	Pore diameter, Å	Pore volume, cm ³ /g	Specific surface area m ² /g
SAPO-34 [7]	22	10	0.06	0.05	3.8	0.27	630
H–Y [9]	6	24	2.1	0.60	0.74	0.56	600
Tseokar-600	5	50	0.54	0.1	—	0.5	320
(contains Pt) [10]							

Table 3. Physical characteristics of compounds 2a-2d

Compound (yield, %)	Bp	¹ H NMR, ppm	¹³ C NMR, ppm	$m/e, (I_{\rm rel}, \%)$
2a (30)	100°C (760 mmHg)	5.39 (s, 2H, CH=CH, J = 8.8). 2.53 (d, 2H, CH ₂ , J = 3.2)	123.39 (CH=CH), 53.29 (2 CH ₂), 139.51 (C=)	(138/140/142)/35/16/5 M ⁺ , (115/117)/(100/32), (77/79)/(44/12), (51)/(39)
2b (95)	42°C	1.35 (s, 3H, CH ₃), 2.53 (d,	17.37 (CH ₃), 53.22 (CH ₂),	(152/154/156)/35/16/5
H ₃ C	(60 mmHg)	(2H, CH ₂ , J = 3.9), 2.85 (d, 2H, CH ₂ , J = 3.9), 5.67 (s, 1H, CH)	61.68 (CH ₂), 81.16 (C), 124.92 (CH=), 140.06 (C=)	M ⁺ , (115/117)/(100/34) , (77/79)/(87/26), (51)/(25)
2c (95)	83°C	1.29 (s, 3H, CH ₃), 1.52 (s,	16.26 (CH ₃), 18.43 (CH ₃),	(164/166/168)/20/14/3
H ₃ C Cl Cl	(20 mmHg)	3H, CH ₃), 3.10 (s, 2H, CH ₂), 3.18 (s, 2H,CH ₂)	54.88 (CH ₂), 59.70 (CH ₂), 82.01 (C), 138.52 (C=)	M ⁺ , (129/131)/(100/30), 93/97, (77/79)/(70/15), (51)/(20)
$\begin{array}{c} \textbf{2d} (36) \\ H_3C & CH_3 \\ H_3C & CH_3 \\ Cl & Cl \end{array}$	76°C (10 mmHg)	1.25 (s, 12H, 4 CH ₃), 5.39 (s, 2H, CH=CH, <i>J</i> = 8.9)	28.19 (4 CH ₃), 52.60 (C), 86.37 (C), 137.23 (CH=CH)	(194/196/198)/11/9/2 M ⁺ , (157/159)/(100/5), 82/14, (77/79)/(50/9), (41)/(16)

 $\begin{aligned} & R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6} = H (1a, 2a) \\ & R^{1}, R^{2}, R^{3}, R^{5}, R^{6} = H, R_{3} = CH_{3} (1b, 2b) \\ & R^{1}, R^{2}, R^{4}, R^{5} = H, R^{3}, R^{4} = CH_{3} (1c, 2c) \\ & R^{3}, R^{4} = H, R^{1}, R^{2}, R^{5}, R^{6} = CH_{3} (1d, 2d) \end{aligned}$

Scheme 1.

125 MHz, respectively, in CDCl₃ solutions using TMS as an internal reference. Chemical shifts are given in the δ scale relative to the TMS internal reference. Spin-spin coupling constants (*J*) are given in hertzs.

Mass spectra were obtained on a Kristall-5000M instrument. Analysis conditions: capillary column 30 m long, column temperature from 80 to 280°C, transition line temperature 300°C, ion source temperature 300°C. Temperature was increased at the rate 20 K/min. Helium as a carrier gas.

The isomerization was carried out in a flow reactor with a fixed-bed catalyst. Reactor volume 30 cm³, atmospheric pressure, temperature range from 180 to 280°C. The raw material (50 mL of a mixture of vinylgem-dichlorocyclopropane with decane in the volume ratio 1 : 3) was supplied with a pump. The obtained catalysate was dried with freshly calcined calcium chloride, the salt was separated by filtration, and the filtrate was evaporated under slightly reduced pressure (except for 2a). Table 3 shows the physical constants of compounds 2a-2d.

FUNDING

This study was supported through a grant from Republic of Bashkortostan for young scientists (of February 8, 2019).

REFERENCES

- Kolesov, S.V., Vorob'eva, A.I., Zlotskii, S.S., Khamidullina, A.R., Muslukhov, R.R., and Spirikhin, L.V., *Dokl. Chem.*, 2008, vol. 418, part 1, pp. 15–16. https://doi.org/10.1134/S0012500808010059
- Thankachan, A.P., Sindhu, K.S., Keerthi Krishnan, K., and Gopinathan Anilkumar, *Org. Biomol. Chem.*, 2015, vol. 13, p. 8780. https://doi.org/10.1039/C5OB01088H
- 3. Seuyep, D.H., N., Luinstra, G.A., and Theato, P., *Polym. Chem.*, 2013, vol. 4, pp. 2724–2730. https://doi.org/10.1039/C3PY00109A
- Arbuzova, T.V., Khamidullina, A.R., and Zlotskii, S.S., *Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.*, 2007, vol. 50, no. 6, p. 15.
- Bogomazova, A.A., Mikhailova, N.N., and Zlotskii, S.S., Germany, Saarbrucken: LAP LAMBERT Academic Publishing GmbH & Co. KG, 2011, p. 89.
- Hudlicky, T. and Reed, J.W., Angew. Chem. Int. Ed., 2010, vol. 49, pp. 4864–4876. https://doi.org/10.1002/anie.200906001
- 7. Sokolova, S.V., Treger, Yu.A., and Murasheva, O.P., *Katal. Prom-st.*, 2012, no. 3, pp. 15–20.
- 8. Agabekov, E.V. and Sen'kov, G.M., *Katal. Prom-st*, 2007, no. 4, pp. 38–43.
- Maksimov, A.L., Dzyubenko, A.A., Khadzhiev, S.N., *Neftekhimiya*, 2011, vol. 51, no. 1, pp. 62–69, https://doi.org/10.1134/S0965544111010117
- 10. Pavlov, M.L., Alyab'ev, A.S., and Makeeva, E.A., *Neftegaz. Delo*, 2012, vol. 10, no. 1, pp. 169–173.
- Raskildina, G.Z., Borisovam Yu.G., and Zlotskii, S.S., *Neftekhimiya*, 2017, vol. 57, no. 2, pp. 220–225. https://doi.org/10.7868/S0028242117020149

Translated by I. Kudryavtsev