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REGIO- AND STEREOSELECTIVE CYCLOPROPANE RING OPENING IN A TETRACYCLIC 

COMPOUND. exo-4-ACETOXY-4-HOMOISOTWISTANE (exo-4-ACETOXYTRICYCLO[5.-

3.1.O3,8]UNDECANE) FROM 2,4-DEHYDRO-4-HOMOTWISTANE (TETRACYCLO[5.4.0.-
O2,4

.O3,,9]UNDECANE) IN ACETIC ACID UNDER SULFURIC ACID CATALYSIS 
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Sulfuric acid catalyzed reaction of 2,4-dehydro-4-homotwistane (1) 

with acetic acid gave predominantly exo-4-acetoxy-4-homoisotwistane (2). 

The result is best interpreted in terms of the edge-protonated cyclo-

propane intermediate 1-H+, in which the ring opening occurs to give the 

most stable skeletal structure 8, while the regio- and stereoselectivity 

arise from the attack of AcOH at the least congested exo-4 site.

A variety of reagents have been shown to add with concominant ring opening 

to the cyclopropane in polycyclic compounds, and the reaction often finds syn-

thetic utility toward functionalized polycycloalkanes which otherwise could be 

prepared only with difficulty.1 We now report regio- and stereoselective addi-

tion of acetic acid to 2,4-dehydro-4-homotwistane (tetracyclo[5.4.0.O2,4.O3,9]-

undecane, 1)2 in the presence of sulfuric acid. The product 4-acetoxy-4-homo-

isotwistanes (4-acetoxytricyclo[5.3.1.O3,8]undecanes, 2 and 6) are sources of the 

corresponding 4-yl cation which was shown to be one of the key intermediates in 

later stages of the tricycloundecane rearrangement .3 

The tetracycloundecane 1 (0.10 g) was stirred at ambient temperature for two 

days with acetic acid (5 ml) containing 98% sulfuric acid (0.05 g). Extraction 

with n-pentane followed by concentration gave a residue which was analyzed on a 

conventional VPC to show only one major peak (96% of the combined peak areas). 

Fractionation on preparative VPC gave 0.094 g (67% yield) of the product.4 

The product was found to consist of two isomers (in 98:2 ratio) of an acet-

oxytricycloundecane upon Golay column GC-MS. The acetate mixture was reduced 

with lithium aluminum hydride to the corresponding alcohols which were separable 

on conventional VPC. Jones oxidation of the alcohol mixture afforded a single 

compound: IR(Nujol)1710,1290,1250,1070,980,860cm-1;1H NMR(CDCl3)δ 1.2

- 2.6(complex m);13C NMR(CDCl3)δC 23.52(d),24.62(t),25.08(t),29.11(t),

29.69 (t), 31.25 (d), 31.38 (t), 31.97 (t), 33.40 (d), 48.15 (d), 215.19 (s); MS

(m/e,rel intensity)164(100, M+),109(54),93(36),83(54),80(96),79(83),

67 (83), 66 (54), 41 (49), 39 (41). Wolff-Kishner reduction led to 4-homoiso-

twistane (8). These results indicated the compound to be an asymmetrical 4-

homoisotwistanone. Since only two structurest, the 2-one (11) and the 4-one (4),

were compatible with the above evidenees, VPC and spectroscopic properties of
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this ketone were compared with those of known 4-homoisotwistan-2-one (11) 5 to 

demonstrate disagreement between the two. Thus the structure of the ketone 

obtained here was unambiguously determined to be 4-homoisotwistan-4-one (4). 

Lithium aluminum hydride reduction reverted the ketone 4 back to a mixture 

of the same alcohols as were obtained from the acetoxytricycloundecanes 2 and 6. 

Ratio of the isomers, however, was greatly different in the two crops, the minor 

constituent (2%) of the alcohol mixture from the acetates 2 and 6 being the major 

one (76%) of that from the ketone 4. On the basis of the established preferable 

attack of lithium aluminum hydride from the less hindered exo side in polycyclic 

ketones,5 the endo configuration 7 was assigned to the major product of ketone

reduction:mp 97-98℃;IR(Nujol)3600-3100,1080,1020,950cm-1;1H NMR

(CDCl3)δ1.0-2.0(complex m,16H),2.88(s,1H, OH),3.3-3.7(m,1H, CHOH);

13C NMR(CDCl3)δC 23.92(t),24.24(t),26.07(t),26.31(t),26.52(t),29.40

(d), 30.21 (d), 31.76 (t), 32.12 (d), 37.97 (d), 72.57 (d); MS (m/e, rel inten-

sity)166(23, M+),148(99),109(79),93(36),81(43),80(100),79(58),67

(66), 66 (42), 41 (45). Accordinqly, the major product alcohol derived from the

acetate mixture should have the exo configuration 3:mp 57.5 - 58.5℃; IR (Nujol)

3500-3100,1100,1010,960cm-1;1HNMR(CDCl3)δ1.0-2.2(complex m, 16H),

2.52(s,1H,OH),3.70(s,1H,CHOH); 13C NMR(CDCl3)δC 22.33(t),25.18(t),

25.75 (d), 25.95 (t), 26.52 (t and t), 30.22 (d), 30.54 (d), 30.98 (t), 37.68 (d),

71.59(d);MS(m/e,rel intensity)166(7, M+),148(100),119(37),109(53),93

(29), 81 (32), 80 (65), 79 (47), 67 (51), 66 (30).

The exo alcohol 3 was tosylated and treated with lithium aluminum hydride in

the usual manner to produce an olefin, 4-homoisotwist-4-ene (9): IR (neat) 3020,

1640cm-1;1H NMR(CDCl3)δ0.7-2.4(complex m,14H),5.2-6.0(complex m,2H,

CH=CH);13C NMR(CDCl3)δC23.47(d),24.85(t),25.10(t),28.59(d and d),

31.43 (d)r 32.16 (t), 32.81 (t), 33.79 (t), 122.39 (d), 135.22 (d), MS (m/e, rel

intensity)148(89, M+),119(27),105(26),92(39), 91(47),81(28),80(47),

79 (60), 44 (50), 41 (26), 32 (100). Hydrogenation of the olefin 9 over palla-

dium on charcoal catalyst regenerated the saturated hydrocarbon 4-homoisotwistane 

(8), in agreement with the skeletal structure of 3. 

A highly stereo- and regioselective cyclopropane ring rupture in 2,4-dehydro-

4-homotwistane (1) seems to be best explained by presuming a product-determining 

attack of acetic acid on the edge-protonated intermediate6 1-H+. Among the pos-

sible sible three products of the edge protonation on 1, which is considered to be rate-

determining,6 1-H+ leading to 4-homoisotwistane structure (2 and 6) would be form-

ed predominantly under thermodynamic control.7 The bridging proton in 1-H+ is ex-

tended toward the endo side, so that the nucleophile should approach more prefer-

ably from the exo side to develop the observed high stereoselectivity to the less 

stable, axial isomer 2. On the other hand, the regiospecificity appears to arise 

from a larger steric congestion at exo-3 than at exo-4 in 1-H+. In contrast to 

1-H+, the corner-protonated species 10 seems difficult to account for the selec-

tive formation of 2. The corner-protonated cyclopropanes are structurally iden-

tical tical with the corresponding carbon-bridged cations, and many of them have been 

found6 to undergo intramolecular hydride transfer and skeletal rearrangement to 

a number of products.
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The presumed intermediacy of the edge-protonated species 1-H+ for the reac-

tion of 1 is indirectly supported by the addition of acetic acid to 2,10-dehydro-

4-homobrendane (tetracyclo[4.4.0.O2'4.O3'8]decane, 12),1d as compared to solvoly-

ses of 4-homobrend-exo-2-yl (exo-2-tricyclo[5.2.1.O3,8]decyl)brosylate (14).8 The 

former reaction proceeded to afford exclusively 4-homobrend-exo-2-yl acetate (13), 

while the latter gave a variety of products derived from the cations 16 through 20. 

Since the brosylate 14 was shown to generate the bridged cation 15, which was the 

same species as the C-3 corner-protonated 12, formation of a single product 13 may 

be accounted for more reasonably with the intermediacy of the edge-protonated spe-

cies 12-H+. 

In conclusion, the present reaction of 1, together with that of 12, suggests 

a possible mechanism involving the edge-protonated intermediate as the principal 

acceptor of the nucleophile. Deuterium labelling studies are now under way to 

confirm this mechanism. 
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