ALKYLATION OF 2-MERCAPTOBENZOTHIAZOLE,

2-MERCAPTOBENZOXAZOLE, AND

2-MERCAPTOBENZIMIDAZOLE

BY POLYCHLOROALKANES

AND ALKENES

E. N. Prilezhaeva and L. I. Shmonina

UDC 542.91+547.789+547.787+547.781

In our overall plan of synthesis of benzothiazoles, benzoxazoles, and benzimidazoles containing in the 2 position side chains with polar groups [1, 2], we alkylated these compounds with trichloropropene and tetrachloropentane [3] in an alkaline medium. The chlorides thus obtained were hydrolyzed to the corresponding carboxylic acids

Scheme 1

Alkylation of these heterocyclic thiones with trichloropropene and tetrachloropentane took place readily, giving chlorides (I)-(IV) (with 75.80% yields) in the form of low-melting slightly yellow crystalline substances.

Polyhalide compounds (I)-(IV) were hydrolyzed with concentrated H₂SO₄ to crystalline carboxylic acids (V)-(VII) with 50-60% yields. Hydrolysis with fuming nitric acid [4] led to formation of yellow complex mixtures of nitration products, which were not subjected to further investigation. Table 1 gives the properties and yields of the compounds obtained.

TABLE 1

Compound No.	bp, °C (p, mm Hg) or mp, °C (solvent)	Found,%			Empirical for-	Calculated,%			. %
		С	н	s	mula	С	Н	s	Yield,
I	3840 (hexane)	42,15	3,36	19,30	$\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{NS}_2\mathrm{Cl}_3$	42,29	3,52	18,79	80
П	3435 (hexane)	44,88	3,65	10,24	C ₁₂ H ₁₂ NOSCl ₃	44,38	3,72	9,88	80
III -	169170 (alcohol)	44,07	4,07	9,92	$\mathrm{C_{12}H_{13}N_{2}SCl_{3}}$	44,52	4,05	9,90	80,5
IV V *	97 — 99 (0,02) 76,5—77,3	43,43 53,52		23,51 23,52		43,49 53,89		23, 22 23,99	75 50
v_{I}^*	(hexane) 68 -69	57,27	5,16	13,08	$\mathrm{C}_{12}\mathrm{H}_{13}\mathrm{NO}_3\mathrm{S}$	57,34	5,21	12,76	56
VII	(hexane - alcohol) 149,8-150,5 (alcohol)	50,55	4,05	26,78	$C_{10}H_9NO_2S_2$	50, 19	3, <i>7</i> 9	26,79	61

^{*}The infrared spectra exhibited bands at 1700-1730 cm⁻¹ characteristic of the C = O group.

N. D. Zelinskii Institute of Organic Chemistry of the Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No.3, pp. 693-694, March, 1969. Original article submitted April 11, 1968.

EXPERIMENTAL SECTION

The melting points of the crystalline compounds were determined in a Koppler apparatus (uncorrected). The infrared spectra were obtained in a UR-10 spectrophotometer in a chloroform solution.

1,1,1-Trichloro-5-(2)-thiobenzotriazolylpentane (II), 1,1,1-trichlorothiobenzoxazolylpentane (III), 1,1,1-trichloro-5-(2)-thiobenzimidazolylpentane (III), and 1,1-dichloro-3-(2)-thiobenzothiazolylpropene (IV) was obtained by mixing an alcoholic solution of the corresponding chloride (0.1-0.05 M) with an equivalent amount of 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzimidazole, respectively in a solution of an equivalent amount of alcoholic solution of NaOH.

Hydrolysis to carboxylic acids was affected by gradual addition of chlorides (I), (II), and (IV) in concentrated $\rm H_2SO_4$ with constant stirring. After addition of the chloride, the reaction mass was heated at 60-68°C for 5 h, poured into icewater, extracted with ether and dried over $\rm CaCl_2$.

CONCLUSIONS

By alkylating 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzimidazole with 1,1,3-trichloropropene and 1,1,1,5-tetrachloropentane, the authors obtained the corresponding chlorides, which were then hydrolyzed to carboxylic acids.

LITERATURE CITED

- 1. E. N. Prilezhaeva and L. I. Shmonina, Zh. Organ. Khim., 2, 1883 (1966).
- 2. E. N. Prilezhaeva and L. I. Shmonina, Izv. Akad. Nauk SSSR, Ser. Khim., 670 (1969).
- 3. R. M. Joyce, W. F. Hanford, and J. Harman, J. Amer. Chem. Soc., 70, 2529 (1948).
- 4. R. Zh. Freidlina and E. N. Vasil'eva, Dokl. Akad. Nauk SSSR, 100, 85 (1955).