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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 66. Number 1. March 2001 

FIBRING: COMPLETENESS PRESERVATION 

ALBERTO ZANARDO. AMILCAR SERNADAS. AND CRISTINA SERNADAS 

Abstract. A completeness theorem is established for logics with congruence endowed with general 

semantics (in the style of general frames). As a corollary. completeness is shown to be preserved by fibring 

logics with congruence provided that congruence is retained in the resulting logic. The class of logics with 

equivalence is shown to be closed under fibring and to be included in the class of logics with congruence. 

Thus. completeness is shown to be preserved by fibring logics with equivalence and general semantics. An 

example is provided showing that completeness is not always preserved by fibring logics endowed with 

standard (non general) semantics. A categorial characterization of fibring is provided using coproducts 

and cocartesian liftings. 

?1. Introduction. Much attention has been recently given to the problems of 
combining logics and obtaining transference results. Besides leading to very inter- 
esting applications whenever it is necessary to work with different logics at the same 
time, combination of logics is of interest on purely theoretical grounds [Blackburn 
and Rijke, 1997]. 

Among the different techniques for combining logics, fibring [Gabbay, 1996a, 
1 996b, 1999] deserves close study. When fibring two given logics we produce a logic 
where we allow the free mixing of the connectives from both logics and we use the 
proof rules from both logics. In [Sernadas, Sernadas, and Caleiro, 1999] an explicit 
semantics is provided for fibring. Therein, soundness is shown to be preserved by 
fibring, but the preservation of completeness is left as an open problem. 

Herein, we concentrate on the problem of preservation of completeness. The 
final result of the paper is a positive answer to this question with reasonable require- 
ments on the two given logics ("full" semantics and availability of "equivalence"). 
Since, "equivalence" implies "congruence" and the former is preserved by fibring, 
the preservation of strong completeness is a consequence of the completeness the- 
orem for general semantics: every logic system with "full" semantics and with 
''congruence" is strongly complete. 

In Section 2 we briefly review Hilbert calculi and their fibrings (free and con- 
strained by sharing symbols). In Section 3 we introduce general interpretation 
systems and their fibrings. The notion of general interpretation systems general- 
izes the notion of interpretation system as adopted in [Sernadas, Sernadas, and 
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FIBRING: COMPLETENESS PRESERVATION 415 

Caleiro, 1999]. This generalization follows the style of general frames for modal 
logic (see for example [Hughes and Cresswell, 1996]), herein in a more general 
context. 

In Section 4, we bring together Hilbert calculi and general interpretation systems 
in order to establish the appropriate notion of general logic system where we can 
study completeness. We present two examples from modal logic, using the standard 
(non general) semantics. The first example shows a case of preservation of weak 
completeness by fibring as a direct corollary of the results in [Kracht and Wolter, 
1991]. The second example, based upon [Wolter, 1996], shows a case where weak 
completeness is not preserved. 

In Section 5, we obtain a (strong) completeness theorem for logic systems with 
full general semantics and with congruence, using an adapted Henkin construction. 
As a corollary, completeness is shown to be preserved by fibring logics with con- 
gruence provided that congruence is retained in the resulting logic. Unfortunately, 
congruence is not always preserved by fibring as shown by the counterexample 
provided at the end of Section 5. 

In Section 6, we introduce the notion of logic with equivalence and show that 
the class of logics with equivalence is closed under fibring and is a subclass of 
the class of logics with congruence. Thus, completeness is shown to be preserved 
by fibring logics with equivalence and general semantics. The class of logics with 
equivalence is a very wide one and includes classical, intuitionistic, minimal and all 
modal propositional logics, as well as any other extension of basic logic ([Sambin, 
Battilotti, and Faggian, 2000]). Along the way, we also establish other preservation 
results like the preservation of the metatheorem of deduction by fibring. 

At both proof-theoretic and model-theoretic levels, we provide a categorial char- 
acterization of fibring. The categorial constructions corresponding to fibrings of 
(general) interpretation systems was much simplified herein compared to [Sernadas, 
Sernadas, and Caleiro, 1999] thanks to the possibility of working, without any loss 
of generality, with interpretation systems closed for disjoint unions (of the world 
spaces). This simplification is clear in the elegant notion of morphism between 
general interpretation systems. The use of categorial constructions (coproducts 
and cocartesian liftings) for characterizing mechanisms for combining logics was 
already advocated in [Sernadas, Sernadas, and Caleiro, 1997a, 1997b] for a simpler 
form of combination (synchronization). The reader less inclined to category theory 
may skip the subsections on categorial constructions without any loss of continuity. 
Anyway, only elementary notions are borrowed from category theory. They are 
presented for instance in [Barr and Wells, 1990]. 

?2. Hilbert calculi. Since we work only with propositional-based logics, the fol- 
lowing notion of signature is enough: a signature is a family C = {Ck}keN where 
each Ck is a set. The elements of Ck are called constructors of arity k. 

Given a signature C and a set E (of schema variables), we can construct formulae 
as follows: the set L(C, 6) of schema formulae is the smallest set which contains 
Co U E and is closed under constructors in C, that is, if c E Ck and Y1 . Yk E 
L(C, 6E), then c(yl,. ,Yk) E L(C, 6E). The elements of L(C, 0) are calledformulae. 
The elements of E are the (atomic) schema formulae for which substitution is 
allowed: a substitution is a function a: L(C, E). Given any schema formula 
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y, the instance of y by the substitution a is denoted by yu and is the result of 
simultaneously replacing each E E. in y by v(4). For sets F of schema formulae, 
we will write Fra to denote {y Y EF}. 

In the sequel, the letter C always denotes a given signature and the set E is 
assumed to be fixed once bor all; we assume also that E is disjoint from each Ck. 
Given two signatures C', C", we denote by C' n C" their intersection: for each 
k E N, (C' n C" C/ n C.'. Mutatis mutandis, we denote by C' U C" their 
union: for each k E N, (C' U C"I)k = C;/ U Ck'. 

DEFINITION 2.1. A Hilbert calculus is a triple ( C, P, D) in which (1) P is a subset 
of pfiL(C, E) x L(C, 6), (2) D is a subset of (pfi,1L(C, E) \ 0) x L(C, 6), and (3) 
D C P. 

Given any r = 
err y) in P, the (finite) set F is the set of premises of r and y is 

the conclusion; we will often write r = (Prem(r), Conc(r)). If Prem(r) = 0, then r 
is said to be an axiom schema; otherwise, it is said to be a proof rule schema. Each 
r in D is said to be a derivation rule schema. We delay until the example below an 
explanation of the advantages of distinguishing between proof and derivation rules. 

DEFINITION 2.2. We say that s E L(C, 6) is provable from F C L(C, E) in the 
Hilbert calculus H = (C, P, D) (in symbols, F FP A) if there is a sequence 
.l * Yin E L(C, ~ such that 2i? = s and, for i = I to m, either 

(1) yi E 17, or 
(2) there exist a rule r E P and a substitution a such that Conc(r)r = yi and 

Prem(r)o C {y1,..iyi-1}. 

When F 0, we say that 5 is provable. 

DEFINITION2.3. We say that 5 E L(C, 6) is derivable from F C L(C, E) in 
the Hilbert calculus H (C, P, D) (in symbols, F Fd a) if there is a sequence 
Y2,i.*2 Y'n E L(C, ) such that Y,? = s and, for i = I to m, either 

(1) y E F, or 
(2) yi is provable, or 
(3) there exist a rule r E D and a substitution a such that Conc(r)a = yi and 

Prem(r)c C {f yi..?Yi-1}- 

When no confusion can arise, we write [-P for [-P as well as [d for r-d . As usual, 
at the left side of -P or of Fd, the set F U{b. I .*n } is often written as F, *1.... 

A Hilbert calculus (C, P, D) induces in a natural way a provability operator (.)' 
and a derivability operator (.) which are maps from pL(C, E) into pL(C, E): 

(2.1) rF = {= L E(C,6) :FFP } 

(2.2) {= { E L(C, 6) F [ d i} 

Clearly, every derivable formula from a set F is also provable from F. The next 
example illustrates the need for distinguishing between "proof" and "derivation". 

EXAMPLE 2.4. In a modal Hilbert calculi we have that P D Po U PR and D-Do, 
where, for any complete set {ax,, . . . }, axn of schema axioms for propositional logic 
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in the language L(C \ Co, E), 

Po { (0, ax,)... (0, ax,), ({1, 2)}, 2) }; 
P - { (0, ((DG(1 X 42)) X ((LL) 

({1 }, (RW1 ) }; 
Do= { ({1, (il X4 '2)}, 42) }. 

Proof rules are to be sound with respect to floating (global) entailment whereas 
derivation rules are to be sound with respect to contextual (local) entailment (see 
Section 3). 

Both (.)HP and (-)H' are closure operators. We say that a set of formulae F is 
p-deductively closed (resp. d-deductively closed) if F = pFP (resp. F = FH'). 

DEFINITION 2.5. The fibring of the Hilbert calculi (C', P', D') and (C", P", D") 
is the Hilbert calculus 

(C', P', D') U (C", P", D") = (C' U C", P' U P", D' U D") 

Whenever C' n C" is the empty signature, the fibring is said to be unconstrained. 
Otherwise, it is said to be constrained by sharing the symbols in C' n C". 

Categorial characterization. We now briefly sketch a categorial characterization 
of both unconstrained and constrained fibring. To this end, we start by introducing 
the relevant categories (of signatures and of Hilbert calculi). 

A signature morphism h : C -* C' is a family {hk }keN in which each hk is a map 
from Ck into Ck. That is, signature morphisms translate constructors preserving 
their arities. Signatures and their morphisms constitute the category Sig. This 
category is finitely cocomplete (in the sense that it has all finite colimits). In 
particular, the category has coproducts and pushouts. It is worthwhile to describe 
in some detail these constructions as they are used in the sequel. 

The coproduct of two signatures C' and C" is the signature C' ?3 C" endowed 
with injections i': C' - C' ?3 C" and i": C" -* C' ?3 C" such that, for each 
k E N, 

* (C' ?D C"1)k is the disjoint union of Ck and Ck,, and 
* ij and ijJ are the injections of Ck and of Ck' into (C' ?3 C")k, respectively. 

In the special case where the two signatures C', C" are disjoint, we can consider 
i', i" to be inclusions and completely disregard them. Therefore, in that special case, 
we can identify the coproduct with the union of signatures (up to isomorphism). 

Assuming that f': C - C' and f" C - C" are injective signature morphisms, 

the pushout of f' and f" is the signature C' 6 C" endowed with the morphisms 
f'Cf" f'Cf" 

g': C' -C' C C"andg":C"- C' ?3 C"suchthat,foreachk eN, 

* (C/ ? C"))k is Ck U ij(Ck, \ f,(Ck)) U il'(Ck$ \ f "(Ck)) and 

* gk(C/) = { J(') if c / ft(Ck) and similarly for g'. gk 

fJ1(c') otherwise 
Note that pushouts exist for any pair f ', f " of diverging morphisms, but we are 
interested in pushouts only for sharing constructors. To this end, it is sufficient to 
consider pushouts of invective morphisms as above. 
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In the special case where the intersection of the two signatures C', C" is C, we can 
consider f', f " to be inclusions and, again, completely disregard them. Therefore, 
in that special case, we can identify the pushout with the union of signatures (up to 
isomorphism). 

It is well known in elementary category theory that pushouts can be calculated 
using coproducts and coequalizers. In the case at hand we have: the pushout 

f'C.f" 
C' ? C" is the codomain of the coequalizer q of the two signature morphisms 
i' o f ' and i" o f ". 

We now proceed to develop the category of Hilbert calculi. 

DEFINITION 2.6. A Hilbert calculus morphism 

h: (C, P, D) -* (C', P', D') 

is a morphism h: C -* C' in Sig such that: 

* h(Conc(r)) is provable from h(Prem(r)) for every r E P; 
* h(Conc(r)) is derivable from h(Prem(r)) for every r E D. 

It is straightforward to verify (by induction on the length of the proof/derivation) 
that every Hilbert calculus morphism preserves proofs and derivations: 

f ifi? [-P 6 then h(F)['Ph(b) 
(2.3) if 

17 F" 6 then h(F)F/dh( ) 

Hilbert calculi and their morphisms constitute the category Hil. Furthermore, 
the maps: 

* N((C, P, D)) = C; 
* N(h: (C,P,D) - (C',PIDI)) = h 

constitute the forgetful functor N : Hil -* Sig. This functor is quite useful for 
relating Hilbert calculi with their underlying signatures. More interestingly, given 
a Hilbert calculus over C and signature morphism from C to C', we can build in 
a canonical way the corresponding Hilbert calculus over C', as follows (using a 
cocartesian lifting): 

PROPOSITION2.7. For each (C, P, D) in Hil and each morphism h : C -* C' in 
Sig, the morphism h : (C, P, D) - (C', h(P), h(D)) is cocartesian by N for h on 
(C, P, D). 

PROOF. It is trivial to verify that h is a Hilbert calculus morphism. Furthermore, it 
is straightforward to verify the universal property of the cocartesian lifting: given a 
Hilbert calculus morphism f: ( C, P, D) - ( C", P", D") and a signature morphism 
g: C' -* C" such that g o h = f, there is a unique Hilbert calculus morphism 
j: (C', P', D') -* (C", P", D") such that j o h = f . Just take j to be g and check 
that it is indeed a Hilbert calculus morphism. -A 

We denote the codomain of this cocartesian morphism by h((C, P, D)). We are 
ready at last to provide the envisaged categorial characterization: unconstrained 
fibring is a coproduct and constrained fibring is obtained by cocartesian lifting. 
As expected, this characterization is quite simple for Hilbert calculi, but, more 
significantly, it will be replicated at the semantic level following precisely the same 
approach. 
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PROPOSITION2.8. Let (C',P',D') and (C",P",D") be Hilbert calculi. Then, 
their unconstrainedfibring (C', P', D') ?3 (C", P", D") is the coproduct 

(C' e C", i'(P') U i"l(Pll), il(DI) U ill(Dll)) 

endowed with the injections i', i". 

PROOF. It is trivial to verify that i', i" are Hilbert calculus morphisms and that 
the universal property of the coproduct holds. -A 

PROPOSITION 2.9. Let (C', P', D') and (C", P", D") be Hilbert calculi and 
f: C -* C',f" C - C" be injective signature morphisms. Then, their con- 

f 'Cf " 
strainedfibring by sharing (C', P', D') ?) (C", P", D") is 

q ((C I, PI, D'I) 3(C" P11, D") 

where q is the coequalizer of i' o f ' and i" o f". 
PROOF. It is trivial to verify that q is a Hilbert calculus morphism and that the 

universal property of the cocartesian lifting holds. -A 

Clearly, when C is the intersection of C', C" and we consider f ', f " to be the 
inclusions, this construction leads to (C', P', D') U (C", P", D"), as defined in 
purely set-theoretic terms before. 

?3. General interpretation systems. Towards presenting the notion of fibring at 
the model-theoretic level, we introduce first the interpretation structures we need 
in order to be able to provide a semantics for a wide class of propositional-based 
logics. 

DEFINITION 3.1. A C-structure is a triple ( U. , v) in which U is a non-empty set, 
_ is a non-empty subset of pU, and v= {Vk}kN is a family of functions such that 

Vk Ck * [ _ ] 

The class of all C-structures will be denoted by Str(C). 

The set U is called the set of points. The set _ is called the set of admissible 
valuations. And v provides the interpretation of the constructors in the signature C. 
The use of a subset of pU as the set of admissible valuations has a long tradition 
which starts with the Henkin general semantics for second order logic and for the 
theory of types ([Henkin, 1950]) and passes through the generalframes in modal 
and temporal logics [Benthem, 1983, 1985], [Hughes and Cresswell, 1996], [Chagrov 
and Zakhryaschev, 1997]. If, in a C-structure S = ( U,2, v), the set _ is p U, we 
say that S is standard. Such standard C-structures were adopted in [Sernadas, 
Sernadas, and Caleiro, 1999]. We need these more general structures in order to 
obtain a completeness result later on. 

DEFINITION 3.2. A pre-interpretation system is a triple (C, M, A) in which M is a 
class and A is a map from M into Str(C). 

The elements of M in a pre-interpretation system are called models, and, for 
m E M, A (m) will be also written as ( Uni -m, Vn).- 
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EXAMPLE 3.3. In the Kripke semantics for propositional intuitionistic logic, a 
model m is tuple ( W R, A, V) in which W is a set, R is a reflexive and transitive 
relation on W, - is the set of all R-closed subsets of W1, and V is a function from 
Co into -. Clearly, U.1 = W and -.. = -S. Furthermore, v..1 is defined by 

Vtn2(A)(bi, b2) = bI n b2 

vin2(V) (bi, b2) = bi U b2 

Vnlt (-)(bl) = Ub :b E -and b CW \ b 

vm12(=)(bi,b2)=Ub :b E -and b C (W\bi)U(b2) 

where b1 and b2 range over S. Since arbitrary unions and finite intersections of 
R-closed sets are R-closed sets, we have that Vink (c) (b) belongs to - for all b E Sk. 

If R is an equivalence relation, then - turns out to be a Boolean subalgebra of PW 
and ( W R, -, V) is a model of classical logic. 

Two C-structures ( U. -, v) and ( U', -', v') are said to be isomorphic (in symbols 
(U. -, v) (U', -', v')) if there is a bijection f from U onto U' such that, for 

every k E N, c E Ck, b' E -,k, and u E U,2 

(3.1) Vj (c)(b') = f (Vk(C) l 

and 

(3.2) f = {-(b') :b'E } 

PROP/DEFINITION 3.4. A pre-interpretation system (C, M, A) is an interpretation 
system iff it is closed under isomorphic images and disjoint unions3; that is, 

* if ( U. -, V) -_ ( U', -" v') and ( U. -, v) = A (m) for some m E M, then there 
exists a m' E M such that A(m') = ( U', -', v'), and 

* if Un n Un, = Sfor all n :4 n' in a subset N of M, then there exists an m E M 
such that 

(3.3) U,,n U Utz 

nGN 

(3.4) An = {b E PU,,: b n Un E Wn foralln E N} 

and,foreveryk E Nandb E sn 

(3.5) vn1k(c)(b) = vnk(c)(b n Unk) 
nGN 

PROOF. Equality (3.4) guarantees that Vmk(C) is defined for every b E n and, 
since the sets Un are pairwise disjoint, Vnk (c) (b) is an element of An - 

'A set X is R-closed whenever, for all x, y C W, x C X and xRy imply y C X. 
2If X = (X,,..., Xk) is a k-tuple of sets and the domain of the function g contains UXi, then we 

abbreviate (g (XI), . . ., g (Xk)) by g (X). Similarly, X n yk will abbreviate (XI n Y...,Xk n Y). 
3In [Sernadas, Sernadas, and Caleiro, 1999], interpretations systems were required to be closed only 

under isomorphic images and included only standard C-structures. 
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For m and N as in this definition, we will say that m is the union of the elements 
of N and that (U n, I Vin) is the union of the C-structures in N. 

If (C, M, A) is an interpretation system, then M is obviously a proper class. Given 
any pre-interpretation system (C, M, A), we can always obtain the smallest inter- 
pretation system (C, M, A)" containing it, by making it closed under isomorphic 
images and disjoint unions in the obvious way (using (3.3-5) as definitions of U,,1, 
A, and Vn,1k). We shall see below that, as far as semantical entailment is concerned, 
there is no essential difference between a pre-interpretation system and its closure. 

Let S (U, A, v) be any C-structure. A variable assignment over S is a map 
a -W ? . The interpretation map (of L(C, E) in S with the assignment a) is a 
function 

L(C, E) -* 

defined by 

(3.6) PIcSl = v,170(c), 

lvils = a(4), 
[Ca .. 'k ) ] = Vmnk(0C1) (A]***FaSk]). 

The contextual satisfaction relation I- is defined by 

(3.7) Sau H- a if u E As 

where 5 ranges over L(C, E ) and u ranges over U. On the basis of this definition, we 
can define the floating satisfaction relation as follows: Sa I- s means that Sau H- s 
holds for every u E U, that is, IHss = U. As usual, we will write (.) H- F as an 
abbreviation of: for every y E 1, ( ) Y y. 

The entailment operators (.)KS and (.)t (relative to the C-structure S) are func- 
tions from pL(C, E.) into pL(C, E). 

(3.8) FK ={IVa(SaI kF F XSa IF )} 

(3.9) Fr ={: VaVu(Sau IF F# XSau Ik )} 

where the superscripts p and d are meant to remind that the operators (. ) and () s 
are the semantical counterparts of 'proof' and 'derivation'. Clearly, 17 c rs [ 

If (C, M, A) is a pre-interpretation system then we will write E[ -J" instead of 
j[. fg(i) and similarly for mau H- (.), ma H- (.), (.)tl71, and (t'1=; moreover, variable 
assignments over A(m) will be referred to as variable assignments over m. The 
entailment operators for (C, M, A) are defined by 

(3.10) Vme = { m EM, Va(ma H- F # > ma H- 6)} 

( 3. 1 1 ) rt F={ f:Vm E M, Va, Vu E U,1 (mau I a F muF)} 

Proposition 3.6 below will be frequently used in the paper and shows that the 
entailment operators of a pre-interpretation system are the same as those of its 
closure. The proofs of that proposition and of the following auxiliary lemma are 
straightforward. 
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LEMMA 3.5. Assume that: (1) (C, M, A) is an interpretation system, (2) N and m 
are as in Definition 3.4, (3) a is a variable assignment over m, and (4) for every n E N, 
an is the restriction of a to n, that is,for every E e, an(4) =(a) n Un. 

Then, for every (o E L( C, E.) and every n E N, 

(3.12) 
n 

- pn n Un 

and 

(3.13) 
in U - pa 

nGN 

PROPOSITION 3.6. Assume that (1) (C, M', A') (C, M, A)C is the closure ofapre- 

interpretation system (C, M, A), (2) (.),P, (.),d () P and (. t)Id are the entailment 
operators induced by (C, M, A) and (C, M', A'), respectively. Then, (.)tI) (.ftJP 

and (.)td = (.)td 

DEFINITION 3.7. Given any set - of admissible assignments in a C-structure 
(U, U , v), we say that A' is a v-subalgebra of - iff' C - and A' is closed under 
the operations Vk (C) for all k E N and c E Ck. An interpretation system (C, M, A) 
is said to be closed under subalgebras iff, for every m E M and every vm -subalgebra 
A' Of Sin, there is a model m' E M such that Un, = Urn, AW - A', and, for all 
k E N and c E Ck, Vmi(C) = Vtn(0j-q, 

The closure under subalgebras of any interpretation system is defined in the obvious 
way. The following proposition is analogous to Proposition 3.6 and shows that also 
closing an interpretation system under subalgebras has no effect on the entailment 
operators. 

PROPOSITION 3.8. Assume that (1) (C, M', A') is the closure under subalgebras of 
the interpretation system (C, M, A), (2) (.)t'P, (.)td ,(.)t /p and (.)t Id are the entailment 
operators induced by ( C, M, A) and ( C, M', A'), respectively. Then, (-) tP _ 

and (.)td = (.)t 

Convention. From now on, unless otherwise stated, all interpretation systems are 
assumed to be closed under subalgebras. 

PROP/DEFINITION 3.9. Thefibring of the interpretation systems (C', M', A') and 
(C", M", A") is the interpretation system 

(C', M', A') U (C", M", A") = (C' U C", M, A) 

where: 
* M is the subclass of M' x M" composed of the pairs (m', m ") such that: 

- Uni' = UMn; An, = An//; 
- Vtn/k(C)(b) = Vm/k(c)(b) for every c E (C' n C")k andb E Ok, (= ,kt,,); 

* A((m', m")) = ( U. A, v) where: 
- U = Un' (= Umr"); - = fn' (= sm"); 
- Vk(C') VmrI k(C') for each c' E Ck; 
- Vk(C ") Vin//k(c") for each c" E Ck'. 

Whenever C' n C" is the empty signature, the fibring is said to be unconstrained. 
Otherwise, it is said to be constrained by sharing the symbols in C' n c". 
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PROOF. We have to prove that (C' U C", M, A) is closed under unions and subal- 
gebras. 

Consider any subset N of M such that Un, n U,,= 0 for all ni #& n2 in N and let 
SN = ( UN, 4'N, VN) be the union of the (C' U C")-structures in N. 

Let N' and N" be the subsets of M' and M" consisting respectively of first and 
of second components in elements of N. Since U(U,11,,11) =U,= U,,,1/ for all pairs 
(m', m") in M, we have that Un, n Un, 0 for alln' H4 n' in N' and Un,, n U,,, 0 
for all n"' 7 nj in N". Thus, we can consider the unions m' and m" of the models 
in N' and in N"; these unions are elements of M' and of M", respectively, and 
Uml/ = Umn// 

For every (n', n") E N, we have _Ad, = A,,. Then, by (3.4), Anl = SAnl and 
hence the pair m = (m', m") belongs to M. 

It is straightforward to check that U,1, UN and, using (3.4), that -W,,1 = JON 
By (3.5) and the definition of A((m', m")) above, we have also v,,1 = VN. This 
concludes the proof that (C' U C", M, A) is closed under unions. 

In order to show that (C' U C", M, A) is closed under subalgebras, we have only to 
observe that any V(m/,tn//)-subalgebra of _W(,/.?1n//) is also a V,"'-subalgebra of An, and 
a v,,," -subalgebra of -Wm,, and that M' and M" are closed under subalgebras. -1 

EXAMPLE3.1O. Assume that (C', M', A') is an interpretation system in which 
M' is the class of all models for intuitionistic propositional logic and that M" 
in (C", M", A") is the class of all models for classical propositional logic (see 
Example 3.3). Consider the fibring (C, M, A) of (C', M', A') and (C", M", A"), 
where we assume that only the elements of CO' CO are shared. Write A', " -i', 

-I", . . . for the other constructors in C' and C". 
For every m = (m', m") in M, the sets -m, n 1n, and Ads coincide. In particular, 

they are Boolean subalgebras of PUm (= PUW1i = pUml) because such is J 
and hence gin/ is closed under complementation. This implies that the functions 

VW,/ (=>') and V,"' (-n'), which are defined as in Example 3.3, coincide with the classical 
Vm//(=">') and v,,//(-"). Thus, by Definition 3.9, v,1G(=>) = v1n(=W>'), vn(-') = 

Vm (-"), and so on, and m turns out to be, as a matter of fact, isomorphic to mi". 

Categorial characterization. We start by defining the appropriate notion of mor- 
phism between interpretation systems. Then we proceed to define, within the 
category of interpretation systems, unconstrained fibring as a coproduct and con- 
strained fibring by cocartesian lifting following, now at the semantic level, the 
categorial approach already adopted for Hilbert calculi. 

DEFINITION 3.1 1. An interpretation system morphism 

h: (C,M,A) -> (C',M',A') 

is a pair h = (h, h) where: 

h : c -> C' is a morphism in Sig- 
* h :M' -+ M; 

such that for every m' E M': 

* Uh( n ) = Un1'; -m' = 
,(n ) 

* for every k E N and c E Ck, Vn,1/k (hk (c)) = Vh(,tn)k (c). 
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Interpretation systems together with their morphisms constitute the category Int. 
Furthermore, the maps: 

* N((C, M, A)) = C; 
* N(h : (C, M, A) -> (C', M', A')) = h 

constitute the functor N : Int -> Sig. This functor is rather useful for relating 
interpretation systems with their underlying signatures. More interestingly, given 
an interpretation system over C and signature morphism from C to C', we can 
build in a canonical way the corresponding interpretation system over C', as follows 
(using a cocartesian lifting): 

PROPOSITION 3.12. For each (C, M, A) in Int and each surjective morphism 
h : C -? C' in Sig, the morphism 

hI: (C,M,A) -? (C',M',A') 

where: 
* M' is the subclass of M such that: v,,1k (cl) V= V,1k (C2) whenever h (c I) h (C2); 
* A'(m) = (Uin Sasn, v') where, for every k E N and c E Ck, vi(hk(c)) Vn,1k(c); 

* Ii =(h, inc) where inc is the inclusion of M' into M 
is cocartesian by N for h on (C, M, A). 

PROOF. Straightforward, following the method sketched in the proof of the cor- 
responding result for Hilbert calculi (proposition 2.7). A 

We denote the codomain of the cocartesian morphism by h ((C, M, A)). We 
are ready now to provide the envisaged categorial characterization: unconstrained 
fibring is a coproduct and constrained fibring is obtained by cocartesian lifting. 

PROPOSITION 3.13. Let (C', M', A') and (C", M", A") be interpretation systems. 
Then, their unconstrainedfibring (C', M', A') (D (C", M", A") is the coproduct 

(C' eD C", M, A) 

where: 

* M is the subclass of M' x M" composed of the pairs (m', m ") such that: 
-Uni1 Uin1/ ; -016i/ = Ail"/ ; 

* A((m', m")) = (U. A, v) where: 
-U = Use7/ (=uns1/); -W = I11 (= g019n I); 

- Vk(i/(C)) = V,11k(c')for eachc' E Cl,; 
- vk(il(CIT)) = Vtnlk(c") for each c" E Ck' 

endowed with the injections: 
* (i', p') where i' is the injection C' -> C' D C" andp' is the projection M -? M'; 
* (i", p") where i" is the injection C" -? C' (D C" and p" is the projection 

M -> M". 
PROOF. It is straightforward to verify that (i', p'), (i", p") are interpretation sys- 

tem morphisms and that the universal property of the coproduct holds. A 

PROPOSITION 3.14. Let (C', M', A') and (C", M", A") be interpretation systems 
and f' : C -? C', f : C -> C" be invective signature morphisms. Then, their 

f 'Cf" 
constrained fibring by sharing (C', M', A') E9 (C", M", A") is 

q((C', M', A') (D (C", MA", A")) 
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where q is the coequalizer of i' o f ' and i" o f/I. 

PROOF. Note that coequalizers are surjective in the category of signatures (since 
coequalizers are epimorphisms in any category). It is trivial to verify that q is an 
interpretation system morphism and that the universal property of the cocartesian 
lifting holds. -1 

Clearly, when C is the intersection of C', C" and we consider f ', f " to be the 
inclusions, this construction leads to (C', M', A') U (C", M", A"), as defined in 
purely set-theoretic terms before. 

?4. General logic systems. 

DEFINITION 4.1. A logic system presentation is a tuple (C, M, A, P, D) in which 
(C, P, D) is a Hilbert calculus and (C, M, A) is an interpretation system. 

We will often abbreviate 'logic system presentation' by l.s.p.. Given any l.s.p. 
22 (C, M, A, P, D), we will denote by ( )'y, (.)H" the proof-theoretic consequence 

operators relative to (C, P, D) and by (.)K2, (.)KS the model-theoretic entailment 
operators relative to (C, M, A). 

A logic system presentation Y is said to be 
* p-sound iff, for all F C L(C, a), F`HP C Fh. 
* p-complete iff, for all F C L(C, 6), rFa D rFK. 

* d-sound iff, for all F C L(C, E), rF C- 
* d-complete iff, for all r C L(C, E.), ran D )ro. 

For F = 0, the inclusions above are referred to as weak (p- or d-) soundness and 
completeness. It is worth noticing that weak p-soundness and weak d-soundness 
coincide, as well as weak p-completeness and weak d-completeness. 

Given the l.s.p.'s A' = (C', M', A', P', D') and Y" = (C", MA", A", P", D"), 
their fibring is defined in the obvious way: Y' U I" is the logic system presentation 
(C'U C", M, A, P'UP", D'UD") in which M and A fulfill Definition 3.9. 22' US" is 
said to be unconstrained or constrained by sharing the elements of C' n C" according 
to whether C' n C" is empty or not. 

Many of the results presented in the sequel regard particular l.s.p.'s, that will be 
called full (see Definition 4.4 below). In these structures, M is the largest class 
allowed by the rules in P and D. 

DEFINITION 4.2. A C-structure S (U, -I, v) is a structure for the Hilbert calcu- 
lus (C, P, D) if, for all F, ( 

(F,rg P Va [Sa I F implies Sa IH- (] 
(F,r) D Va, u [Sau I F implies Sau IF ] 

where ar ranges over the set of variable assignments over S and u ranges over U. A 
model m in the interpretation system (C, M, A) is a model for the Hilbert calculus 
(C, P, D) iff A(m) is a structure for (C, P, D). 

The following proposition is proved in [Sernadas, Sernadas, and, Caleiro, 1999] 
for standard semantics. The adaptation of the proof to general semantics is obvious. 

PROPOSITION 4.3. If every model in Y = (C, M, A, P, D) is a model for (C, P, D), 
then Y is p-sound and d-sound. 
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Of course, it makes no sense to say that m is a model for a given Hilbert calculus 
if an interpretation system to which m belongs, and hence a function A, are not 
provided. In particular cases, however, the set-theoretical structure of m provides a 
preferred related structure; this holds, for instance, for the models of intuitionistic 
logic considered in Example 3.3 and for the modal models consider below. In these 
cases, by 'a model of' a given Hilbert calculus, we will always mean a model such 
that its preferred structure is a structure for that Hilbert calculus. 

DEFINITION 4.4. A logic system presentation (C, M, A, P, D) is full [resp. standard 

full] iff the image of the function A is the class of all structures [resp. standard 
structures ] for (C, P, D). 

Given any Hilbert calculus (C, P, D), there are many full [standard full] l.s.p.'s 
for (C, P, D). If (C, M, A, P, D) and (C, M', A', P, D) are two l.s.p.'s of this kind, 
however, there is a natural one-to-one correspondence m -? m' between M and 
M' such that A(m) and A'(m') coincide. Then, it makes sense to refer to the full 
[standard full] l.s.p. of (C, P, D). 

Propositions 3.6 and 3.8 imply that full l.s.p.'s are closed under unions and 
under subalgebras. A standard full l.s.p., instead, in general is not closed under 
subalgebras, unless, for every model m, pUm has no proper v,,-subalgebra. 

LEMMA 4.5. Let (C', M', A', P', D') and (C", MA", A", P"," D) be l.sp.'s and as- 
sume that every model in M' [M"] is a modelfor (C',P',D') [(C",P",D")]. 
Then, every model in (C', M', A', P', D') U (C", MA", A", P"," D") is a modelfor 
(C' U C", P' U P",D' U D"). 

PROOF. Let m be any model in (C', M', A', P', D') U (C", M", A", P"," D"). 
Then, m = (m',m") for suitable models m' E M' and mi" E M", and A(m) is 
defined according to Definition 3.9. The sets Um, Uml, and Umrn coincide, as well as 
the sets Fm -nm, and -m,,. Thus, every variable assignment over m can be viewed as 
a variable assignment over m' and as a variable assignment over m", and hence the 
implications in Definition 4.2 hold for P =P' U P" as well as for D = D' U D". -1 

THEOREM 4.6. Let 5' (C', M', A', P', D') and 2" = (C", MA", A", P", D") 
be full [resp. standard full ] l.s.p.'s. Then, the fibring (C, M, A, P, D) = 2' U 2" is 
full [resp. standardfull]. 

PROOF. Let S = (U, _, v) be any structure for (C, P, D) and consider the C'- 
and C"-structures S' and S", defined by: U' = U" U, U.' = " = , and 
v = vIc,, and v" = vC/. Since C = C' U C" and D D' U D", S' and S" are 
respectively structures for (C', P', D') and for (C", P", D"), and hence there are 
m' IE M' and mi" E MA" such that A'(m') = S' and A"(m") S" because Y' and 
5" are full. 

The models m' and m" fulfill the conditions of Definition 3.9 and hence we can 
consider the element (m', m") of M. Definition 3.9 implies also that A((m', m")) 
S and this proves that every structure for (C, P, D) is A (m) for an m E M. The 
converse inclusion is given by Lemma 4.5. 

As for standard full l.s.p.'s, we have only to observe that, for Umr = UMr" Un?, 
P(UM=) = P(Um//). A 

As a consequence of the proof of this theorem and of Proposition 4.3, we have that 
fibrings preserve soundness. 
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We turn our attention now to the problem of preservation of completeness by 
fibring. The examples considered below are based on results proved in [Kracht 
and Wolter, 1991] and in [Wolter, 1996] and concern modal and temporal logics 
endowed with standard semantics; thus, for every model m considered in the rest 
of this section, A p(U,1) is always assumed and we may omit a56. in the 
presentation of these models. 

4.1. Two examples from modal logic. 

DEFINITION 4.7. We say that C is a modal signature based on the set HI if: 1) 
CO = HI, 2) C1 {-} U {KOi}i , where I is a set, 3) C2 {A}, and 4) Ck 0 for 
each k > 2. 

The set {Oi }'iI in a modal signature C will be referred to as the set of modalities 
in C. If, as a limit case, this set is empty, then we have that C is the signature of 
propositional logic based on H. The fibring C' U C" of two modal signatures is a 
modal signature. 

A (standard) Kripke model for the modal signature C is a tuple (W. {Si }ici, V) 
in which W is a nonempty set, each Si is a binary relation on W (the accessibility 
relation for the operator Oi), and V: HI p W. The Kripke C-structure based on 
the model (W, {Si}iCI, V) is the triple (W, pW, v) in which: 

EO vo (7r) V (7r), for each 1c E H, 
El vI(-,)(b) W\b, 
E2i v, (0>)(b) {w E W: "lw' (wSiw' and w' E b)}, 
E3 v2(A)(b, b') b n b'. 

If, like in Example 2.4, Di is used as primitive modal operator instead of Oi, then 
the rule corresponding to E2i is vI ( i)(b) = { w E W: Vw' (wSiw' -? w' E b) } 
and this set is vj-i)vi(0i)vj-i)(b). In the sequel, we will shift freely from the O 
notation to the El notation and vice-versa. 

The operators v1 (0i) and the relations Si are interdefinable by means of the 
following equivalence which is a consequence of (E2i). 

(4.1) wSiw' if w E v1(O>)({w'}) 

Notice that this equivalence is meaningful because, we are here considering stan- 
dard interpretation systems and hence each singleton {w'} is always an admissible 
valuation. 

PROPOSITION 4.8. Let (C, M, A) apre-interpretation system in which every element 
of M is a Kripke model. Then, every C-structure in the closure of (C, M, A) is 
isomorphic to a Kripke structure. 

PROOF. We have to show that, given any set N of Kripke models such that U, n U,1, 
for all n 74 n' in it, the C-structure (Un, All, v,,,) defined by means of (3.3-5) is 
isomorphic to a Kripke structure. Since each n E N is a standard model, by (3.4), 
we have also Am = p(U,,). Equality (3.5) and straightforward Boolean operations 
show that EO, 1,3 hold for v,,?. 

Assume now that each n E N has the form( Wn, {SnI Wi.I, Van). For every i E I, 
define the binary relation Smi on U,. by Seni = UnCENSni. By (3.5) and E2i, we have 

(4.2) VniI (0i)(b) U { w E We: 3w' (wSniw' and w' E b n W,) } 
nAN 
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Since the sets W, are pairwise disjoint, this equality implies 

(4.3) v,711 (0i)(b) { w E U,,: 3w' (wS,,.iw' and w' E b) } 
and hence v,,, 1 fulfills E2i. - 

DEFINITION 4.9. We say that (C, M, A) is a modal interpretation system whenever, 
for every m C M, there is a Kripke model m' = (W', {S'},iC, V'), such that A(m) 
is the Kripke C-structure of m'. 

According to this definition, given any model m in a modal interpretation system, 
we can always assume that it is a Kripke model and that A(m) is the corresponding 
Kripke structure. By Proposition 4.8, any union of Kripke structures is (isomorphic 
to) a Kripke structure; moreover, the accessibility relations in the union are the set- 
theoretical unions of the corresponding accessibility relations. This proves the 
following proposition. 

PROPOSITION 4.10. If(C', M', A') and(C", M", A") are modal interpretation sys- 
temns, then (C'UC", M, A) (C', M', A')U(C", M", A") is a modal interpreta- 
tion system and, for every m = (m', m") in M and every modality Ki in C'UC", 
S,17i = S,71,i or S,11i = S1,,,i, according to whether Ki is a modality in C' or in C". In 
particular, if K' E (C' n C")1, then S,,p = S,1,i = S,11"i. 

COROLLARY 4.11. Assume (C'UC", M, A) = (C', M', A')U(C", M", A"), where 
(C', M', A') and (C", M", A") are modal interpretation systems. Let I, I', andI" be 
respectively the index sets for modalities in C'U C", C', and C", so that I I' U I". 
Then, the elements of M are the tuples (WJ4{Si}1i6, V) such that (WIJ{S1}fici, V) is 
an element of M' and (W. {Si}icIu, V) is an element of MA". 

Examples. 1) IfI' I= , then M = M' n MA". 2) IfI' n I" 0 (so that C' n C" 
is the propositional logic signature) and M' and MA" are respectively the classes 
of all Kripke models for C' and C", then M is the class of all Kripke models for 
C'uC". 

DEFINITION 4.12. Given any modal signature C, we say that (C, P, D) is a miodal 
calculus whenever 

(4.4) P D U Po, U Po and D = Do 
iGI 

where the sets Po, Pn;, and Do are defined as in Example 2.4. 
Furthermore, a modal logic system presentation is a tuple (C, M, A, P, D) in which 

(C, M, A) is a modal interpretation system and (C, P, D) is a modal calculus. 

By Definition 2.5, the (possibly constrained) fibring of two modal calculi is still 
a modal calculus; it is (isomorphic to) the smallest modal calculus which contains 
the other two. Thus, fibrings of modal l.s.p.'s are modal l.s.p.'s. 

In order to be able to apply the results proved in [Kracht and Wolter, 1991] and 
[Wolter, 1996], in the next two subsections we assume that, for all modal logic 
system presentations (C, M, A, P, D) considered therein, 

(4.5) no element of CO occurs in some rule in P or in D 

It must be also observed that the possibility of transferring the completeness result 
of [Kracht and Wolter, 1991] to fibring, uses in an essential way the assumption 
that interpretation systems are closed under disjoint unions. 
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In order to avoid trivializing the problems, we also assume consistency, that 
is, 0F' 4 L(C, 6) (which is equivalent to 0H' 4 L(C, E)), for all provability and 
derivability operators considered in the next subsections. 

An example of completeness preservation. 4 

The following theorem is a consequence of Theorem 1 in [Kracht and Wolter, 
1991]. 

THEOREM 4.13. Assume that (1) (C', P', D') and (C", P", D") are modal Hilbert 
calculi, (2) thesignatures C' and C" have disjointsets ofmodalities, and(3) that (.)H 

(.)H"', and (.)HI are respectively the schema provability operators of (C', P', D'), 
(C"I,P"1,D"1), and (C',P', D')U(C"I,P"1, D"). Then, 0H" = 0Hp n L(C', ) and 

- 0Hp n L(C", _). 
COROLLARY 4.14. Assume that: (1) Y' = (C', M', A', P', D') and 2" = 

(C", M", A", P", D") are modal l.s.p.'s, (2) C' and C" have disjoint sets of modal- 
ities, and (3) Y = 5'UY"'(= (C'U C", M, A, P, D)) is weakly p-complete. Then, 
Y' and Y" are weakly p-complete. 

PROOF. Let (.)HP, (.)H , and (.)Hp be the schema provability operators of 2', 
2", and 2, respectively. Assume that the formula (s in L(C', ) does not belong 
to 0'F ; by Theorem 4.13, S X 0VP, which implies (s f 0Wy because Y is weakly 
complete. Then, there exists a model m E M, an element u of U,,1, and schema 
variable assignment ar such that u E'. We can assume 

m=( Uln fsfic}il U fsj .1jej, V), 

where {S'/}11 and {S7}16 are the (disjoint) families of accessibility relations for 
modalities in C' and in C", respectively. 

Let m' be (U,,1, {S/}SiGI, V). Since no modality K< in C" occurs in (, [61. does 

not depend on the relations S' and it is equal to [Ps]1'. To conclude the proof, we 
have only to observe that, by Corollary 4.1 1, the model m' is an element of M'. -1 

The converse of this corollary is a consequence of the main theorem (Theorem 7) 
in [Kracht and Wolter, 1991]; in the language of fibring, this theorem can be read 
as: 

THEOREM 4.15. Let the modal l.s.p. Y' and Y" be as in Corollary 4.14 and assume 
in addition that they are full and weakly p-complete. Then, the full modal l.s.p. for 
(C'UCC", P' U P", D' U D") is weakly p-complete. 

PROPOSITION4.16. Let the modal l.s.p. Y' and Y" be as in Corollary 4.14 and 
assume in addition that they are full, then the constrained fibring 

M/ USH/ = (C'UC", M, A, P' U P", D' U D") 

is full. 
PROOF. Let m = (U,11, {S,'}lic U {S'/},6J, V) be any Kripke model for the cal- 

culus (C'UC", P' U P", D' U D") and consider the models m' = (U,,1, {S1{}1je, V) 
and m" = (U,,1, {S7'}1ej, V), which are models for, respectively, (C', P', D') and 

4In [Kracht and Wolter, 1991], the results considered in this subsection are proved for modal logics 
with only one modality; in Section 9, however, the authors show how to extend the theorems to arbitrary 
modal logics. 

This content downloaded from 185.44.78.113 on Sat, 14 Jun 2014 14:09:18 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


430 ALBERTO ZANARDO. AMILCAR SERNADAS. AND CRISTINA SERNADAS 

(C"/, P"1, D"). Then, m' E M' and mi" E M" because Y' and Y" are full. By 
Corollary 4.1 1, m E M. - 

THEOREM 4.17. Fibrings offull modal l.s.p.'s with disjoint sets of modalities preserve 
weak completeness. 
An example of non-preservation of completeness in temporal logic. 

DEFINITION 4.18. Given a modal signature C with {Oi}iGI as set of modalities, 
the temporal signature based on C is the modal signature Ct in which Ct \ { i} is 
{Oi}ic U {< }0ie,, where each K0- is a new modality 

The elements Oi and K0- of C1, in a temporal signature, are usually referred to 
as the i-th future and past operators. Of course, every modal signature in which the 
set of modalities is infinite or has a finite even number of elements, can be viewed 
as a temporal signature; things become more interesting when we define the notion 
of temporal logic system presentation. 

DEFINITION4.19. Given a temporal signature Ct, we will say that Y 
(Ct, M, A, P, D) is a temporal logic system presentation whenever: (1) Y is a modal 
logic system presentation, (2) every m (U, {Si}IiI U {Si 7}I, V) in M is a tem- 
poral model, that is, for every i E I, S= (Si)-1, and (3) (Ct, P, D) is a temporal 
calculus, that is, P contains (0, 

- 
X DKi-4) and (0, F1 X 7Oi ) for every i E I. 

It can be easily verified that any Kripke model for the temporal calculus (C t, P, D) 
is a temporal model. 

DEFINITION 4.20. The basic temporal logic system presentation Kc, for the tem- 
poral signature Ct is the tuple (Ct, MB, AB, PB, DB) in which: (1) MB is the class 
of all temporal models for Ct, (2) DB= DO (see 4.4), and (3) 

PB = PO U U (P-iuP- u{(0, Koi 4) (0' E oi )}) 

Thus, in the basic temporal logic system presentation Kc,, we have that 
(Ct, PB, DB) and (Ct, MB, AB) are respectively the smallest temporal calculus and 
the largest temporal interpretation system for Ct. Classical temporal logic results 
give that Kc, is sound and complete. 

Following [Wolter, 1996], the minimal temporal extension of a modal logic can be 
obtained by 'duplicating' the modal operators and by adding the basic axioms for 
temporal logic of Def. 4.20. Formally: 

DEFINITION4.21. Given any modal logic system presentation Y2 

(C, M, A, P, D) with modalities Ei (i E I), the minimal temporal extension of Y is 
the temporal logic system presentation Yt = (Ct, Mt, At, pt, Dt) in which: (1) Mt 
is the class of all mt = (W {SS}6ic U {S-}Jic, V) such that m = (W {Si,}iGI, V) 

belongs to M, (2) Dt = Do, and (3) 

Pt = P U U (P- U {(0, 1 #> D1~7-), (0, > 
#? i) 

iGI 

In [Wolter, 1996], a modal logic A is considered which is complete for validity 
with respect to a given class of Kripke frames, and it is shown that the minimal 
temporal extension (therein denoted by A+.t) of A is not complete for the same 
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class of frames viewed as temporal frames. Since the basic temporal logic system 
presentation of any temporal signature is complete, the following proposition allows 
to view Wolter's result as an example of non-preservation of completeness. 

PROPOSITION4.22. For every modal logic system presentation Y= 
(C, M, A, P, D), the minimal temporal extension St of 2 is 2UKct. 

PROOF. By Definitions 4.20 and 4.21, Pt is P U PB and Dt is D U DB and 
hence, by Definition 2.5, (Ct, Pt, Dt) = (C, P, D)U(Ct, PB, DB). The equality 

(Ct, Mt, At) = (C, M, A)U(Ct, MB, AB) is a consequence of the same definitions, 
and of Corollary 4.11. - 

?5. L.s.p.'s with congruence. Completeness. 

DEFINITION 5.1. (a) A Hilbert calculus (C, P, D) is said to be a Hilbert cal- 
culus with congruence iff the following Metatheorem of Congruence holds: For 
every p-deductively closed set F, every k > 0, every c E Ck, and formulae 

1, * * * , 61 5 ... 5 nb in L(C, 6), 

]F, 5, d Kd' and F, 5> _d 6i for i = 1,k (MTC) 
F, c(Q,.. . bk)Kd C(l1.,** 

(b) A l.s.p. (C, M, A, P, D) is said to be a Usp. with congruence iff (C, P, D) is a 
Gilbert calculus with congruence. 

Observation. Many well-known logics with a propositional basis enjoy the MTC. It 
is worth noticing that, if F were not required to be p-deductively closed, then MTC 
would fail in a wide class of logics, including modal and temporal logics. In fact, 
for k = 1 and F = {bi, 1 }, the antecedent of MTC holds trivially in every Hilbert 
calculus, while, in modal logic, we do not have F, E516 F"d r1. 

In the sequel, we use the metalinguistic expression 

(5.1) Er (Q, 6')-def r , b / and r, 6 

Of course, from the premises of the MTC we can also infer F, c ('1.... '5k) Fkd 

c(6', .(. . k) and, therefore, the MTC can be stated as follows: 

Er ('5i, '5) for i = 1, ... . k 

Er (c(*5i 5 **k), C(1, .**) 

DEFINITION 5.2. Within a given Hilbert calculus (C, P, D): 

(a) For any F C L(C,_ ) and'5 e L(C, E), we say that (1) F is a p-non-3 set if 
F FP'5, (2) F is p-consistent iff it is a p-non-b set for some formula', (3) F is a 
maximal p-non-b set if it is a p-non-s and F' F-k for every proper extension 
F' of F, (4) F is maximal p-consistent iff it is a maximal p-non-5 set for some 
formula 6. 

(b) d-non-5 sets, d-consistent sets, and sets maximal for these properties are de- 
fined similarly, by replacing F-P by F-d. 

We will abbreviate 'maximal p-consistent set''maximal d-consistent set' by m.p- 
c.s. and m.d-c.s.. Every m.p-c.s. is p-deductively closed. A classical Lindenbaum 
construction shows that everyp-non-5 set can be extended to a maximal p-non-6 set, 
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and hence that anyp-consistent set can be extended to a m.p-c.s.. These properties 
hold similarly for m.d-c.s.s. 

Main Henkin Construction 

In this construction, (C, P, D) is any fixed Hilbert calculus with congruence, 
the operators (.)KP and (.)Kd are the corresponding provability and derivability 
operators, and Fo is any fixed p-consistent set. Moreover, we assume that F0 is 
p-deductively closed. The Henkin construction of the C-structure S (U. A, v) 
for (C, P, D) is described below. 

Let U be the set of all m.d-c.s.s which contain Fo. Clearly, U is non-empty 
because Fo is p-consistent and hence it is also d-consistent. For every formula 
y E L(C, E), set 

{Y u = fu E U Y E u} 

LEMMA 5.3. For every formula y, 

y eo if 1yf = U 

PROOF. The implication from the left to the right is trivial because each element 
of U contains F0. Assume y X F0. This implies F0 V/I' y and Fo yid y because 
(.) 

p 
C ()KP. Then, F0 is a d-non-y set and any maximal d-non-y extension of it 

belongs to U \ y. -1 

LEMMA 5.4. For allformulae y, y', 

(5.2) Eri-(y,y') Of& IYI = IAY' 

PROOF. If Ero(y, y') does not hold, then, by (5.1), eitherF0, yF I' y y or Fo, y f ydi 

In the first case, F0 U {y'} is a d-non-y set and hence there is a m.d-c.s. u E U which 
contains y' but does not contain y; in the second case, we can reach the opposite 
conclusion. In both cases, we have Iy I ; Iy'j 

If, conversely, Ero (y, y') holds, (5.1) yields that y' belongs to every d-deductively 
closed set which contains Fo U {y } and vice-versa; thus, every u E U which contains 
y contains also y' and vice-versa. - 

Set 

={b C U such that b y I for some formula y 

Thus, arbitrary elements of _ will be written as Iy 1. For y E Co, set 

VO(Y)= AY 

For k>O and c E Ck, let vk(c) be the element ofWk -> _ defined by 

Vk(C)(IYI|,**., Yk|) = |C(Yl1.** Yk)| 

The functions Vk(c) are well-defined. If, in fact, I yi I Iy'I holds for i = 1 to k, 
then, Lemma 5.4 implies that Ero (Yi, y') holds for i 1, . . ., k, which implies in 
turn Ero(C(y 1 .yk), C(yY. y)) by MTC. Using Lemma 5.4 again, we have 
C(YI, Yk)j = IC(Y', Yj)I. 

This concludes the definition of the C-structure S. 
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LEMMA 5.5. Assume that (1) the set {f1, . . .}, Xn contains the elements of d occur- 
ring in the formula y, (2) a is a variable assignment over S such that, for i 1 to n, 
a (4j) = 16il, and (3) y (dj /bj) is obtainedfrom y by replacing each dj occurring in it 
by bi. Thus, 

[y1Is = ly(4i/bi)l 

PROOF If y E Co, then y (di /bj) = y and the thesis is the definition of vo. If y is 
hi, then [y]s = ac(GI) = bi'I = Jy(4j/bj)j. 

Let y be c(YI . Yk) and assume inductively that the thesis holds for Y, Yk* 

Then, the following equalities hold 

MS = P1,c(y1,...,Yk)IA =Vk(C)(I[Yl 
., 

1 *,YkI L ) 

Vk(C)(Y1 (4i/bi)|, * * *, |yk(4i/li)|) = ICc(yi(ii/ i), , Yk(.i/i)) 

but c ((yiG (i /bj), . . (, A (i/i)) is y (ji /5i) * 

In particular, if ao is the variable assignment such that ao(4) for every 
E E.., then 

(5.3) UIVY = YI 

THEOREM 5.6. The C-structure S is a structure for (C, P, D). 

PROOF. Assume r ({Y1, Yk},Y) E P, and [yj I]S = U for j I to k. Let 
{f1 . n } be the (possibly empty) set of elements of occurring in r and assume 
a (dj) 15i |. By Lemma 5.5, |yj (dj/b)| U for each j, and, by Lemma 5.3, 
yj (di /1i) E Fo. This set is p-deductively closed and hence, by clause (2) in Defini- 
tion 2.2, y(4j/bj) belongs to it and Iy(di/ji)l = U. Lemma 5.5 yields [yIs = U. 

Assume now r = ({lY, Yk},Y) E D, and u E [yj]s for j = I to k. By 
Lemma 5.5, u E Iyj(Vi/bi)l which is equivalent to yj(ji/5i) E u. This set is d- 
deductively closed and hence clause (3) in Definition 2.3 implies y(ji/bi) E u. By 
Lemma 5.5, we have u E ~[y]s. 

End of Main Henkin Construction. 

THEOREM 5.7. Everyfull logic system presentation Y = (C, M, A, P, D) with con- 
gruence is p-complete and d-complete. 

PROOF. Assumes ? (F) 
- 

and let F0 be (F)'P , so that F0 fulfills the conditions of 
the Main Henkin Construction. Define a C-structure S = ( C A, v) starting from 
F0 like in that construction; by Theorem 5.6, S is a structure for (C, P, D) and hence, 
since 2 is full, there is a model m E M such that A(m) = S. Since 5 X (F)'Y, 
we have b 0 (FO)Ky and b ? (F0)K; thus, we can consider a maximal d-non-b 
extension of F0 and this set is an element u of U. Let ao the variable assignment 
considered in (5.3), so that IEy]J = U for every y E F0, but [6]m C U \ {u} and 
hence X (F) . 

Assumed (F)Ky, so that, in particulars X (0)Kp. Let F0 be (0)H- and define 
the structure S starting from this F0 like above. By the assumption, the set (I) Y, 
which contains Fo, can be extended to a maximal d-non-6 set u E U. For ao as 
above, we have u E j[y]s for every y E F, but u f j[bJs . Then, we can proceed in 

the same way as in the first part of the proof to conclude X (F)tY . - 
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By Theorem 4.6, the fibring of full l.s.p.'s is full and, hence, if the MTC is also 
preserved, the previous theorem implies that completeness is preserved as well. 
Therefore, it is important to investigate whether congruence is preserved by fibring. 
Actually, it is not always preserved as the following counterexample shows. 

EXAMPLE 5.8. Consider the Hilbert calculi H' (C', P', D') and H" 
(C", P", D") defined as follows: 

Co, = l,7r?}; C1'={c}; Ck= 0 for k > 2; 
P {({}, c(4))} with ( E D' = 0; 

CO" ={7, o7r, 7r2}; Ck/ = 0 fork > 1; 
P1 = D" = {({ro, f7r}, 1r2), ({7rO, r2}, 7rI)} 

Clearly, MTC holds in both. In (C", P", D"), it holds vacuously since we have 
no constructors of arity greater than zero. In (C', P', D'), assume that F is p- 
deductively closed, F,151 'd J2, and F, 12 [-d 61. We have to establish F, c(61 ) Kd 
c(162). Since D' = 0 and using F,61 [d K 2, we have to consider only two cases: 
(1) c52 E F: then, since F is p-deductively closed, C(65?) E F and we are done by the 
extensiveness of derivation; (2) J2 is 161: then, we have the conclusion directly by the 
extensiveness of derivation. 

But the MTC does not hold in the constrained fibring H of H' and H" by 
sharing 7ro, 7riz 7r2. In fact, consider F = ftrol" = {Cn(7ro): n > O}. Then, we have 
Erp(7r1, 7r2), but we do not have Er (c (7r1i), c (7r2)). A 

Fortunately, there is a wide class of logics for which MTC is preserved by fibring 
as shown in the next section. 

?6. L.s.p.'s with equivalence. Preservation results. 

DEFINITION 6.1. (a) A Hilbert calculus (C, P, D) is said to be a Hilbert calculus 
with implication => iff C2 contains ?X and the Metatheorems of Modus Ponens 
(MTMP) and the Metatheorem of Deduction (MTD) hold: For every p-deductively 
closed F C L(C, E) and 5,52 E L(C, 

r, [-d ((51 =:b> (52) (MTMP) 
F,61 [d L52 

Pb-"6 (Ia' X?2) (MTD) 

(b) A l.s.p. (C, M,A,P,D) is said to be a l.s.p. with implication iff (C,P,D) is a 
Hilbert calculus with implication. 

PROPOSITION 6.2. Thefibring of Hilbert calculi with implication is a Hilbert calculus 
with implication, provided that implication is shared. 

PROOF. Let us consider the Hilbert calculi (C', P', D') and (C", P", D") both 
with implication a> and their fibring (C, P, D). 

(1) MTMP holds in the fibring. 
Note that MTMP holds in a Hilbert calculus iff {G4i ? 42)}P, 4 Id [ 2. In fact, 

from MTMP we get this derivation by choosing F = {(4j ?4 2)}, 1 = 41 and 
L52 = c2. Conversely, if (61 X> b2) is derived from F, then, by monotonicity, it is 
also derived from F U {ab I}. Since F is p-deductively closed, the set {(5 1 I 2)? } 
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is contained in F, and hence 2 can be derived from F U {f15 } using the instantiation 
{(1 X 2)} ,1, F-d c2 of {(G ?X 42), 41, _d 42. Therefore, it is trivial that the 
presence of MTMP in at least one of the two given Hilbert calculi guarantees that 
the MTMP holds in the fibring. Indeed, by (2.3), since there is a morphism from 
each of the two given Hilbert calculi to the fibring, {Gi ?4 2)}P, , F-d 42 will 

hold also in the fibring. 

(2) MTD holds in the fibring. 
Observe that MTD holds in a Hilbert calculus with MTMP if (i) F- (4 X 4): 

(ii) {f11}UP F- (2 ? 42); and (iii) for each derivation rule r ({Y1, Yk}, Y), 
we have {G Y X Y1).(4 X Yk)}A F- (d ? y), where 4 does not occur 
in r. From MTD we obtain (i) by choosing F 0'P and 61 = 52 t, taking 
into account that 0HP F-" (?d ? ) is equivalent to F-d (4 ?> ). From MTD we 
obtain (ii) with F {c1}K a5 - 42 and 62 = 1 . In order to obtain (iii), choose 
IF {= ?X .( YI), * * Yk)}j, 11 = and 152 = y. Using the MTMP, from 
F U {f} we derive Y1, k* So, using the rule r, from F U {f} we derive y, and, 
by the MTD, we get (iii). Conversely, assume (i), (ii) and (iii) and F,61 F-d (12. 

We establish F F-d (b15I X> 152) by complete induction on the length of the given 
derivation sequence for F,61 a-d a122. If 152 is in F or is equal to 61, we use a 
suitable instantiation of (ii) or (i), respectively. If 2 results by application of 
a rule r from previous Y1, ., k, then, by the induction hypothesis, from F we 
derive (1 X YI),---, ('1 ?b Yk). Since derivability implies provability and F is 
p-deductively closed, we have {(61 X Yi), .('1 =E yk)}P C F. Thus, by (iii) and 
monotonicity, from F we derive ((1 ? '2). Therefore, it is trivial that if MTD holds 
in both given Hilbert calculi then it will hold in their fibring. Indeed, if (i) and (ii) 
hold in at least one of them, they will also hold in the fibring, again using (2.3). 
However, (iii) is required to hold in both of them since the fibring has the derivation 
rules of both. For each rule r = ({Y1, ., k}, y) from each of the given calculi, 
we shall have {G y I Yi).(4 X Yk)}' F-d () ? y) in the fibring invoking once 
again (2.3). - 

Note that, in this proposition, the assumption of sharing the implication is needed 
only for showing the preservation of the MTD, more specifically, in order to guar- 
antee that (iii) above encompasses all derivation rules in the fibring. 

DEFINITION 6.3. (a) A Hilbert calculus (C, P, D) with implication ?> is said to 
be a Hilbert calculus with equivalence X iff C2 contains X and the Metatheorem 
of Biconditionality ] (MTB]), Metatheorem of Biconditionality 2 (MTB2), and the 
Metatheorem of Substitution of Equivalents (MTSE) hold: For every p-deductively 
closed F C L(C,E) and'51,'52,8c L(C, e ), 

]F-d ('61 52) ]Fd ('2 ?51) 
F A-d ('61 (52) (T1 

]F - _? d (?'6I (52) (MTB2) 

F F-" (51 X 12) (MTSE) 

where a' is obtained from E by replacing one or more occurrences of 61 by '2. 
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(b) A l.s.p. (C, M, A, P, D) is said to be a Lis.p. with equivalence iff (C, P, D) is a 
Hilbert calculus with equivalence. 

LEMMA 6.4. In a Hilbert calculus with implication, the MTSE holds if for every p- 
deductively closed F C L(C,E),(51 ** ,'cEL(C, ),k>O.andc E C- 

]FFk-d (65 6=') for i =15.. 5k 

P b- (c((5i . .5k) X C((1. 5)) (MTSE') 

PROOF. MTSE' results by k applications of a special case of the MTSE. MTSE 
results from MTSE' by a straightforward induction on the length of e. (Note that 
in a calculus with equivalence we have [_d (4 X 4), since we have [_ (d z 4) in 
every calculus with implication.) - 

PROPOSITION 6.5. The fibring of Hilbert calculi with equivalence is a Hilbert cal- 
culus with equivalence, provided that both the implication and the equivalence are 
shared. 

PROOF. Let us consider two Hilbert calculi (C', P', D') and (C", P", D"), both 
with equivalence, and their fibring (C, P, D). According to Proposition 6.2, this 
fibring is a Hilbert calculus with implication. It remains to verify that MTB1, 
MTB2 and MTSE' are preserved (if so, thanks to the previous Lemma, so will 
MTSE). 

(1) MTB 1 holds in the fibring. 
Observe that MTB1 holds in a Hilbert calculus if {GI ?X 42), (42 X 41)}KP [-d 

(4l X 42). This derivation follows from MTB1 for F {Gfi ?X 2), (42 ?4 wl)}W 

51 = 41, and 52 = c2. Conversely, since derivability implies provability and F is 
p-deductively closed, the assumptions of MTB1 imply {((51 ?> (2), ((52 ?b (51)}K F C 

F. Hence, the instantiation {(61 X5i ?62), ((52 ?b (51)}Hp Fd ((1 I (52) Of {(GI ?> 

42), (42 ?X W1)}Kp Fd (l X 2) gives the conclusion of MTB1. Therefore, by 
(2.3), it is trivial that the presence of MTB1 in at least one of the two given calculi 
guarantees that the MTB 1 holds in their fibring. 

(2) MTB2 holds in the fibring. 
Note that MTB2 holds in a Hilbert calculus if {(4j * 42)}1 Fd (c 1 ? 42) 

and {(I 2 2)}KP Fd (42 X 4,). These derivations follows from MTB2 for 
F {(= 1 I 42)}, 1 = - 1 , and 2 5= 2. Conversely, as in (1), the assumption of 
MTB2 implies {(61 * (2)}HP C F, from which the conclusions of MTB2 follow by 
the obvious instantiations of { (4j # 42)0}1 Fd (l ?4 42) and of { (4j * 42)}k" d 

(42 > 4,). Therefore, we obtain the preservation using again (2.3). 
(3) MTSE' holds in the fibring. 
The preservation is established on the basis of (2.3), taking into account that 

MTSE' holds in a Hilbert calculus iff 

( ) i= 1, .k.}. - k} " (C(,.,k) X c( , - - - ... 

for every constructor c of arity greater than zero. Each of these derivations fol- 
lows from MTSE' by choosing F {( ) :i 15 ... . k}P, i = and 

' . In fact, each (ji X ') is derived from F and hence, using the MTSE', 
we establish that (ci .. ) . c(4/ . ... 5)) is derived from F. Conversely, 
assume that each (6i - cS') is derived from the p-deductively closed set F. This 
implies that {(6i X os '): i = 1, ... . k}Hp C F. Using the appropriate instantiation 
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of{(4 X i) i 1. k}' [d (c(,. .k) X C(4, . ,)) we establish that 
(C ( 1, , k)- X , c (61 G...... )) is derived from F. 

Note that the assumption of sharing the equivalence is needed only for showing 
the preservation of the MTSE', more specifically, in order to guarantee that 

{(E~ ;) X :i'): 1.k}I,, [k / (C(4I , Wk) X4 C(', . )) 

holds for all non 0-ary constructors in the fibring. 
Observation. The previous preservation results could have been proved also for 
the stronger version of the metatheorems considered above, in which F ranges over 
arbitrary subsets of L(C, E.), not only over p-deductively closed sets. The proofs of 
the new preservation properties can be obtained from those of Proposition 6.2 and 
6.5 by simply replacing every set of the form X'P by E. 

THEOREM 6.6. The MTC holds in a Hilbert calculus with equivalence. 
PROOF. Assume that F is p-deductively closed and that F, bi [' ad and F, QId K6 a 

for i = 1, . . ., k. Then: 1) F kd (i ? i') and F Fld (6' ?X i) by MTD, 2) IF Fl 
(bi X 6i) by MTB 1, 3) F Kd (C (al, .,k) X C (bY ) . . Y)) by MTSE', 4) r K' 

(C(161, * *, k) ? C (,Y, . .h.)) by MTB2, and 5) F, C (1, i..k) F-d C(61 5. . ok)) 

which is the thesis, by MTMP. - 

This theorem provides a very wide class of Hilbert calculi in which MTC holds. 
Classical, intuitionistic, and modal logics are logics with equivalence and hence they 
belong to this class. With respect to this, it is important to observe that these logics 
can be viewed as extensions of the logic called basic logic in [Sambin, Battilotti, and 
Faggian, 2000], which turns out to be a logic with equivalence as well (where X is 
defined on the basis of X~ and of &). This implies that other extensions of basic 
logic (like, e.g., linear logic and quantum logic) are also logics with equivalence and 
hence they enjoy MTC. 

Proposition 6.5 shows that the class of Hilbert calculi with equivalence is closed 
under fibrings if implication and equivalence are shared, and hence this kind of 
fibrings preserves also MTC. Incidentally, Example 5.8 shows that the calculi H' 
and H" considered therein, as well as their fibring H, cannot be endowed with 
equivalence without changing the provability and derivability in a substantial way. 

A trivial consequence of Theorems 4.6 and 5.7 is that p-completeness and d- 
completeness of full l.s.p.'s with MTC is preserved by fibring whenever MTC is 
preserved. Thus, Proposition 6.5 and Theorem 6.6 imply the following theorem of 
preservation of completeness, which holds for all logics considered above. 

THEOREM 6.7. Thefibring by sharing implication and equivalence of two full l.sp.'s 
with equivalence is p-complete and d-complete. 

?7. Concluding remarks. We obtained a (strong) completeness theorem for logic 
systems with full general semantics and with congruence, using an adapted Henkin 
construction. As a corollary, completeness was shown to be preserved by fibring 
logics with congruence provided that congruence is retained in the resulting logic. 
Although congruence is not always preserved by fibring, we were able to establish a 
sufficient condition for its preservation. This condition holds in every extension of 
basic logic, including classical, intuitionistic, minimal and all modal propositional 
logics. 
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General semantics was motivated by realizing that (weak) completeness is not 
always preserved when fibring logics with standard (non general) semantics. In the 
end, working with general semantics allowed us to obtain the envisaged preservation 
result for strong completeness. It remains an open problem if the positive result in 
Subsection 4.1 concerning the preservation of weak completeness can be improved. 

General semantics is also interesting because it allows the faithful representation 
of the semantics of intuitionistic logic (contrarily to standard semantics as discussed 
in [Sernadas, Sernadas, and Caleiro, 1999]). However, the fibring of intuitionistic 
logic with classical logic still leads to the collapsing of all connectives into classical 
logic. This is a well known problem with current accounts of fibring [Gabbay, 1999]. 
At the proof-theoretic level it is possible to avoid the collapse by constraining the 
use of the axiom (, -> (2 -> 1 ,)) as proposed in [Cerro and Herzig, 1996]. But at 
the model-theoretic level it is an open problem how to avoid the collapse. 

It should be noted that it is necessary to be able to impose requirements in 
inference rules in order to be able to constrain their use. Therefore, the solution 
proposed in [Cerro and Herzig, 1996] implies a more complex notion of Hilbert 
calculus, along the same lines in [Sernadas, Sernadas, Caleiro, and Mossakowski, 
2000] where inference rules with requirements were introduced for another reason 
(for dealing with the problems of logics with variables, terms and binding operators). 

Future work is planned at extending the transference result established in this 
paper to such more complex logics with variables, terms and binding operators. 
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