Die Suboxometallate A_9MO_4 (A = Rb, Cs; M = Al, Ga, In, Fe, Sc)

The Suboxometallates A_9MO_4 (A = Rb, Cs; M = Al, Ga, In, Fe, Sc)

Constantin Hoch,*^[a] Johannes Bender,^[a] Andreas Wohlfarth^[a] und Arndt Simon^[a]

Professor Martin Jansen zum 65. Geburtstag gewidmet

Keywords: Suboxides; Oxometallates; Alkali metals; X-ray diffraction; Cluster compounds

Abstract. Single crystals of the suboxometallates A_9MO_4 (A = Rb, Cs; M = Al, Ga, Fe, Sc) were prepared by reaction of stoichiometric mixtures of M_2O_3 with alkali metals and their oxides A_2O . They crystallize in the tetragonal Cs₉InO₄ structure type (space group *I4/mcm*) and contain *ortho*-oxometallate(III) anions in a metallic matrix. Cesium can

1 Einleitung

Seit langem sind Suboxide und Subnitride der Alkali- und Erdalkalimetalle Gegenstand eingehender Untersuchungen [1]. Sie enthalten isolierte Oxid- oder Nitridanionen in diskreten und kondensierten Clustern, die im Innern ionisch und nach außen hin metallisch sind. Vor kurzem wurde Cs₉InO₄ beschrieben [2], das anstelle einzelner Oxid- oder Nitridionen komplexe Oxoindat-Ionen (InO₄)^{5–}enthält. Damit konnte gezeigt werden, dass das Strukturprinzip der Suboxide bzw. Subnitride um Strukturen mit komplexen Anionen erweiterbar ist. In der Folge wurden zu Cs₉InO₄ isotype Suboxometallate hergestellt, bei denen Substitutionen sowohl im Alkalimetall-Teilgitter als auch im Orthometallat-Anion auftreten können. Hier beschreiben wir Einkristallstrukturen und Eigenschaften der bisher bekannten Suboxometallate vom Cs₉InO₄-Typ und orientierende Substitutionsversuche.

2 Experimenteller Teil

Als Ausgangsstoffe wurden käufliche Oxide M_2O_3 eingesetzt (α -Al₂O₃ (Merck, reinst), Ga₂O₃ (Alfa Aesar, 99.99 %), In₂O₃ (Heraeus, 99.999 %), Fe₂O₃ (ChemPur, 99.9 %), Sc₂O₃ (Alfa Aesar, 99.9 %)). Cs₂O wurde in Abwandlung der in [3] beschriebenen Vorschrift wie folgt hergestellt: Eine bekannte Menge Caesiummetall (ca. 7–10 g) wurde mit der zur Oxidation zu Cs₃O benötigten Menge Sauerstoff zur Reaktion gebracht. Der Sauerstoff wurde durch langsame thermische Zersetzung von HgO erzeugt [4]. Die Reaktion erfolgte in einer Quarz-

 [a] Max-Planck-Institut für Festkörperforschung Heisenbergstraße 1 70569 Stuttgart, Germany be partially substituted by rubidium, as shown for phases of arbitrary compositions (Rb_xCs_{1-x}) Cs_8GaO_4 (x = 0.57) and (Rb_xCs_{1-x}) Cs_8InO_4 (x = 0.87). The substitution leads to statistical occupation of one crystallographic position. The same holds for substitutions of M, as in $Cs_9(Al_xIn_{1-x})O_4$ (x = 0.51) and $Cs_9(Sc_xIn_{1-x})O_4$ (x = 0.68).

glasapparatur, die in einem Ölbad zuerst gekühlt und dann bei fortschreitender Reaktion erwärmt wurde. Nach vollständiger Aufnahme des Sauerstoffs wurde im Vakuum bei 220 °C das überschüssige Caesium abdestilliert. Das Produkt bestand aus orangefarbenen Kristallschuppen von Cs₂O, dessen Reinheit pulverdifferaktometrisch kontrolliert wurde. Auf analoge Weise ließ sich auch Rb₂O erhalten.

Die Suboxometallate A₉MO₄ (A = Rb, Cs; M = Al, Ga, In, Fe, Sc) ließen sich durch Umsetzung von M₂O₃, A und A₂O darstellen. Die möglichst genau auf ein stöchiometrisches Verhältnis 1:5:8 eingewogenen Edukte (Gesamtmenge jeweils zwischen 8 und 15 mmol) wurden in mechanisch verschlossenen Tantaltiegeln erhitzt. Diese standen in verschlossenen Stahlautoklaven, die wiederum in mit Argon gefüllte Glasrohre eingesetzt wurden. Die Reaktionen erfolgten für M = Al, Ga, In, Sc mit folgendem Temperaturprogramm: In 5.5 Stunden wurde die Probe linear auf 300 °C erhitzt, bei dieser Temperatur zwei Stunden gehalten und anschließend in 10 Stunden auf 200 °C abgekühlt. Danach wurde der Ofen abgeschaltet und die Probe bei Raumtemperatur entnommen. Für M = Fe wurde die Probe in 1.5 Stunden auf 180 °C erhitzt, dort für eine Stunde gehalten und anschließend ungeregelt auf Raumtemperatur abgekühlt.

Abbildung 1. Fotografie eines von Caesiumsuboxid benetzten Cs_9GaO_4 -Kristalls. Die Ausprägung der (100)- und der (110)-Flächen führt zu einem achteckigen Querschnitt des Prismas. Dieser Habitus ist für A₉MO₄-Kristalle typisch.

^{*} Dr. C. Hoch Fax: +49-711-689-10-91 E-Mail: C.Hoch@fkf.mpg.de

ARTICLE

 $\label{eq:table_transform} \begin{array}{l} \mbox{Tabelle 1. Farben, mechanische Eigenschaften und Zusammensetzungen der Suboxometallate A_9MO_4.} \end{array}$

Verbindung	Farbe	Härte	Zusammer	nsetzung
			Einkristall	EDX
Cs ₉ AlO ₄	messingfarben	sehr weich, duktil	Cs ₉ AlO ₄	
Cs ₉ GaO ₄	kupfern	weich, duktil	Cs ₉ GaO ₄	Cs _{8,5(6)} GaO ₄
Cs ₉ InO ₄	violettbronze	weich, leicht spaltbar	Cs ₉ InO ₄	Cs _{8.9(2)} InO ₄
Cs ₉ FeO ₄	dunkelgolden	weich, duktil	Cs ₉ FeO ₄	Cs10(2)FeO4
Cs ₉ ScO ₄	golden	weich, leicht spaltbar	Cs ₉ ScO ₄	
$(Rb_xCs_{1-x})Cs_8GaO_4$	dunkelbronze	spröde	x = 0.57	
$(Rb_xCs_{1-x})Cs_8InO_4$	bronze	spröde	x = 0.87	
$Cs_9(Al_xIn_{1-x})O_4$	silbern	sehr weich, duktil	<i>x</i> = 0.51	x = 0.57(2)
$Cs_9(Sc_xIn_{1-x})O_4$	golden	weich, leicht spaltbar	<i>x</i> = 0.68	x = 0.42(5)

Die Suboxometallate entstehen als lange, weiche tetragonale Prismen mit metallischem Glanz und charakteristischen Färbungen (siehe Tabelle 1 und Abbildung 1).

In der Regel haftet den Kristallen etwas flüssiges Suboxid A_xO an, das durch Zentrifugieren weitestgehend entfernt werden kann. Wenn größere Mengen an Suboxid entstanden waren, konnte die Bildung von

Oxometallaten beobachtet werden, beispielsweise $Cs_8In_2O_7$, Rb_5GaO_4 oder Cs_4FeO_3 [5]. Alle Suboxometallate sind sehr empfindlich gegen Oxidation und Hydrolyse. Die Arbeiten wurden daher entweder in einer argongefüllten Glovebox oder mit der Schlenk-Technik durchgeführt.

Aus Proben der Reaktionsprodukte, die unter mit Kaliumsand (fein verteiltes Kalium, hergestellt durch Schmelzen von Kaliumstücken in Paraffinöl und Abkühlen unter starkem Rühren) getrocknetem Paraffinöl aus der Glovebox an Luft gebracht wurden, konnten für einkristalldiffraktometrische Untersuchungen geeignete Einkristalle separiert werden. Sie wurden mit trockenem Paraffinöl in Glaskapillaren $(Ø_{innen} = 0.1 \text{ mm})$ eingeschmolzen und auf Einkristalldiffraktometern mit Image-Plate-Detektoren (IPDS1 bzw. IPDS2, Stoe & Cie. GmbH, Darmstadt) in Graphit-monochromatisierter Mo- K_{α} - bzw. Ag- K_{α} -Strahlung vermessen. Mit den Programmen X-AREA, X-SHAPE und X-RED [11] wurden die Daten auf Lorentz-, Polarisations- und Absorpionsfehler korrigiert (numerische Absorptionskorrektur anhand der optimierten Kristallgestalt). Die Lösung mittels direkter Methoden erfolgte mit dem Programm SHELXS97 [11], die full-matrix-leastsquare-Verfeinerungen gegen F^2 mit SHELXL97 [11]. Weitere Angaben zu Datensammlung, Strukturlösung und -verfeinerung finden sich in Tabelle 2, die jeweiligen Lageparameter sind in Tabelle 3 zusammengefasst, interatomare Abstände und ausgewählte interatomare Winkel in den Tabellen 4 und 5. Einzelheiten zur Einkristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe,

Tabelle 2. Angaben zur Datensammlung, Strukturlösung und -verfeinerung der Suboxometallate A9MO4.

	Cs ₉ AlO ₄	Cs9GaO4	Cs ₉ ScO ₄	Cs ₉ FeO ₄	Cs ₉ ScxIn _{1-x} O ₄	Cs ₉ AlxIn _{1-x} O ₄	RbxCs _{1-x} Cs ₈ GaO ₄	RbxCs _{1-x} Cs ₈ InO ₄
Kristallsystem Raumgruppe Z	tetragonal <i>I4/mcm</i> (Nr. 140)							
a / Å	15 572(3)	15490(2)	15 610(1)	15 592(3)	15 573(1)	15 520(2)	15 096(3)	15 188(2)
	12.372(3) 12.420(2)	12.490(2) 12.488(1)	12.010(1) 12.7013(0)	12.572(3)	12.884(1)	12.520(2) 12.661(1)	12.385(2)	12.845(1)
V/λ^3	12.420(2)	2006 4(0)	3117 1(4)	30567(0)	31252(0)	3050(1)	12.303(2)	2063 0(0)
\sqrt{g}	2 830	2990.4(9)	2 781	2 860	2 875	2 800	3 018	2903.0(9)
graph)	2.037	2.940	2.701	2.000	2.075	2.077	5.010	2.970
Kristallgröße /mm	0 3×0 2×0 2	0 3×0 1×0 2	0 2×0 2×0 2	0.1×0.1×0.2	0 3×0 2×0 2	0 3×0 2×0 1	0 1×0 2×0 1	0 4×0 2×0 3
Kristallform	0.5**0.2**0.2	0.5**0.1**0.2	0.2.0.2.0.2	t	etragonales Prism	19	0.1.0.2.0.1	0.4.0.2.0.5
Messtemperatur				t	RT	14		
Diffraktometer	IPDS 2	IPDS 1	IPDS 2	IPDS 2	IPDS 1	IPDS 1	IPDS1	IPDS1
Strahlung	Mo-K	$A \sigma_{-} K$	Mo-K	Mo-K	Ag-K	Ag-K	Ag-K	Ag-K
Wellenlänge /Å	0.71073	0 56083	0 71073	0.71073	0 56083	0 56083	0 56083	0 56083
Monochromator	0.71075	0.50005	0.71075	0.71075	Granhit	0.50005	0.50005	0.50005
μ/cm^{-1}	10.78	6.18	10.59	11.05	5 77	5.82	6.81	6.42
Messmodus	m-scans	0-50205	m-scans	m-scans	0-50905	0-502	0.01	0.42
Wiessinouus	$\Delta \omega = 1.0^{\circ}$	ϕ scans, $\Delta \phi = 1.0^{\circ}$	$\Delta \omega = 1.0^{\circ}$	$\Delta \omega = 1.0^{\circ}$	ϕ set and ϕ	ϕ set ins, $\Delta \phi = 1.0^{\circ}$	ϕ secures, $\Delta \phi = 1.0^{\circ}$	ϕ seens, $\Delta \phi = 1.0^{\circ}$
	0°_180°	$\Delta \varphi = 1.0$ 0°-200°	0°_180°	0°_180°	Δφ 1.0 0°_200°	$0^{\circ}-200^{\circ}$	Δφ 1.0 0°_200°	Δφ 1.0 0°_200°
Massharaich /ºA	3 3 3 3 7	0 - 200	26310	26323	2 1 24 2	21241	0 = 200	0 = 200
Indexbergich	24-6-24	2.1-24.5	2.0-51.9	2.0-32.3	2.1-2+.2	2.1-2+.1	2.0-22.5	2.2-17.5
Indexbereien	-24 < n < 24,	-22 < h < 22, 22 < h < 22	-23 < h < 23,	-23 < h < 13, 23 < h < 23	-22 < h < 22, 22 < h < 22	-22 < h < 22	-20 < h < 20, 20 < h < 18	-9 < n < 15, 16 < b < 16
	-24 < k < 22, 10 < l < 16	-22 < k < 22,	-23 < k < 20, $18 < l < 16$	-23 < k < 23, $18 < l < 15$	-22 < k < 22, 17 < l < 18	-22 < k < 22	-20 < k < 10, $15 < l < 15$	-10 < k < 10, $13 < l < 13$
comessone Pefleve	10605	21333	18/33	15782	20102	10684	0338	-13< <i>i</i> <13
unabhängiga Pafl	1621	1260	1461	1466	1356	1316	003	537
Pefl mit $F^2 > 2\sigma(F^2)$	656	556	800	1400	627	1310	335	421
$R_{\rm eff}$, $\operatorname{Intr} P_0 > 20(P_0)$	0.0832	0.0006	0.0877	0 2723	0.1207	475	0.2711	421
D1	0.0032	0.0356	0.0512	0.2723	0.1207	0.0491	0.2/11	0.0837
N1 11/P2	0.0979	0.0350	0.1254	0.0795	0.0389	0.1300	0.0495	0.0475
$min/max Aa(a^{-})/ax \lambda^{-3}$	1.51/ 1.21	0.0390	0.1234	0.1713	0.1120	0.1390	0.1047 0.87/ 1.02	1.22/0.62
Korrokturon	1.31/-1.21	0.93/-0.31	0.34/-0.75	0.02/-0.03	0.81/-0.50	(n)moriseh) [11]	0.87/-1.03	1.22/-0.02
min Transmission	0.0077	0 2070	0.1215			(numerisen) [11]	0.5240	0.2402/
max Transmission	0.09//	0.5979	0.1215	0.0034	0.5242	0.4005	0.5549	0.2492/
Anzahl dar Daramatar	0.2013	0.3639	0.2333	0.2023	0.3247	0.0332	0.0155	0.3641
Anzani dei Parameter	23	∠4	∠4	23	23	23 0.50(1)	23 0.57(4)	23 0.87(2)
x geman verienerung					0.0/(1)	0.30(1)	0.37(4)	0.0/(3)

76344 Eggenstein-Leopoldshafen (Fax: +49-7247-808-666, E-Mail: crysdata@fiz-karlsruhe.de) unter Angabe der Hinterlegungsnummern CSD-420321 (Cs₉AlO₄), CSD-420320 (Cs₉GaO₄), CSD-420322 (Cs₉ScO₄), CSD-420323 (Cs₉FeO₄), CSD-420327 (Rb_xCs_{1-x}Cs₈GaO₄), CSD-420326 (Rb_xCs_{1-x}Cs₈InO₄), CSD-420325 (Cs₉Al_xIn_{1-x}O₄) bzw. CSD-420324 (Cs₉Sc_xIn_{1-x}O₄) angefordert werden.

Tabelle 3. Fraktionale Atomkoordinaten der Suboxometallate A₉MO₄ (Standardabweichungen in Einheit der letzten Stelle jeweils in Klammern). Zum Vergleich sind die Koordinaten in Cs₉InO₄ [2] mit angegeben. Die Koordinaten wurden mit dem Programm StructureTidy [11] standardisiert. Die Atome M(1) besetzen die Lage 4*b* (0, ½, ¼), die Atome A(1) besetzen die Lage 16*j* (*x*, 0, 1/4), die Atome A(2) und A(3) besetzen die Lage 8*h* (*x*, *x*+½, 0), die Atome A(4) besetzen die Lage 4*c* (0, 0, 0) und die Atome O(1) besetzen die Lage 16*l* (*x*, *x*+½, *z*).

Verbindung	A(1)	A(2)	A(3)	O(1)	
	x	x	x	x	Z
Cs ₉ AlO ₄	0.2753(3)	0.1590(3)	0.5812(2)	0.068(2)	0.164(3)
Cs ₉ GaO ₄	0.27498(4)	0.16224(5)	0.58053(4)	0.0692(3)	0.1610(5)
Cs ₉ ScO ₄	0.27100(6)	0.16378(6)	0.58061(5)	0.0725(4)	0.1587(5)
Cs ₉ FeO ₄	0.2752(2)	0.1637(2)	0.5805(2)	0.069(1)	0.159(2)
$Cs_9(In_xSc_{1-x})O_4$	0.27175(5)	0.16522(5)	0.58033(4)	0.074(3)	0.1557(5)
$Cs_9(Al_xIn_{1-x})O_4$	0.27357(8)	0.16328(9)	0.58046(7)	0.0714(5)	0.1593(9)
$(Rb_xCs_{1-x})Cs_8GaO_4$	0.27072(9)	0.16564(9)	0.58133(8)	0.0713(5)	0.1601(7)
$(Rb_xCs_{1-x})Cs_8InO_4$	0.26783(6)	0.16884(6)	0.58123(6)	0.0770(3)	0.1534(5)
Cs ₉ InO ₄	0.27211(3)	0.16654(3)	0.58004(3)	0.0752(2)	0.1534(4)

Tabelle 4. Ausgewählte interatomare Abstände /pm in den Suboxometallaten A₉MO₄. Zum Vergleich sind die Abstände in Cs₉InO₄ [2] mit angegeben. Für $d_{A-O(1)}$ sind jeweils die Bereiche vom kleinsten und größten Abstand A(1–3)–O(1) angegeben. $d_{A(4)-A(4)}$ entspricht jeweils c/2, wie auch der nicht gelistete Abstand $d_{M(1)-M(1)}$. Standardabweichungen in Einheit der letzten Stelle jeweils in Klammern.

Verbindung	d _{M(1)-O(1)}	$d_{A(4)-A(1)}$	$d_{A(4)-A(2)}$	d _{A-O(1)}	$d_{A(4)-A(4)}$
Cs ₉ AlO ₄	182(3)	529.4(3)	586.0(2)	287.3(2) - 308.7(2)	621.0(1)
Cs9GaO4	188.0(6)	528.11(7)	580.42(7)	286.3(6) - 307.5(5)	624.41(6)
Cs_9ScO_4	198.1(7)	530.31(8)	583.81(7)	286.0(7) - 313.8(6)	639.57(5)
Cs ₉ FeO ₄	190(2)	531.9(2)	583.2(2)	289(1) - 308(1)	628.7(1)
$Cs_9(In_xSc_{1-x})O_4$	203.5(6)	531.83(7)	581.37(6)	283.8(6) - 313.3(6)	644.22(5)
$Cs_9(Al_xIn_{1-x})O_4$	194(1)	529.6(1)	580.77(9)	285(1) - 310.5(9)	633.07(6)
(Rb _x Cs _{1-x})Cs ₈ GaO ₄	188.5(9)	512.7(1)	563.3(1)	282.7(9) - 304.3(7)	619.3(1)
$(Rb_xCs_{1-x})Cs_8InO_4$	206.7(7)	518.26(8)	564.56(7)	278.8(7) - 310.8(6)	642.25(6)
Cs ₉ InO ₄	206.8(5)	531.32(7)	578.39(9)	281.7(5) - 311.9(4)	645.02(8)

Temperaturabhängige Pulverdiffraktometrie wurde an Proben von Cs₉FeO₄ nach der modifizierten Guiniertechnik [6] durchgeführt. Dafür wurde gemörsertes Material in Glaskapillaren (Ø_{innen} = 0.3 mm) eingeschmolzen, mit 5.7 °C·h⁻¹ auf 230 °C erhitzt und mit 3.4 °C·h⁻¹ wieder auf Raumtemperatur abgekühlt.

Feingemörserte Proben zur Differenzthermoanalyse (30–50 mg) wurden unter Argon in einseitig verschlossene Tantal-Röhrchen ($\emptyset_{innen} = 2 \text{ mm}$) eingefüllt, zunächst mechanisch und dann mit einer Laser-Punktschweißanlage dicht verschlossen. Sie wurden in einer DTA-Messapparatur (Eigenbau) mit einer Heizrate von 3 °C·min⁻¹ aufgeheizt. Das DTA-Signal der Proben wurde gegen KNO₃ bzw. NH₄NO₃ als externe Standards registriert.

3 Ergebnisse und Diskussion

Alle hier vorgestellten Vertreter der Suboxometallate A₉MO₄ kristallisieren isotyp zu Cs₉InO₄ [2]. Die Struktur ist aus zwei

Tabelle 5. Ausgewählte interatomare Winkel $/^{\circ}$ in den Suboxometallaten A₉MO₄. Zum Vergleich sind die analogen Winkel in Cs₉InO₄ mit angegeben. Standardabweichungen in Einheiten der letzten Stelle jeweils in Klammern.

Verbindung	O-M-O	A(1)-A(4)-A(1)
Cs ₉ AlO ₄	108(2), 110.1(9)	69.87(2), 71.83(4),
, ,		108.17(4), 110.13(2), 180
Cs9GaO4	107.5(4), 110.5(2)	69.544(6), 72.48(1),
· ·		107.52(1), 110.456(6), 180
Cs ₉ ScO ₄	107.8(4), 110.3(2)	68.677(7), 74.17(1),
		105.83(1), 111.323(7), 180
Cs ₉ FeO ₄	105(1), 111.6(7)	69.59(2), 72.38(4),
		107.55(3), 110.44(27), 180
$Cs_9(In_xSc_{1-x})O_4$	106.7(4), 110.9(2)	68.480(6), 74.55(1),
		105.45(1), 111.520(6), 180
$Cs_9(Al_xIn_{1-x})O_4$	107.5(7), 110.5(3)	69.068(9), 73.41(2),
		106.59(2), 110.932(9), 180
(Rb _x Cs _{1-x})Cs ₈ GaO ₄	107.6(5), 110.4(3)	68.61(1), 74.30(2),
		105.70(2), 111.39(1), 180
$(Rb_xCs_{1-x})Cs_8InO_4$	106.2(4), 111.1(2)	67.423(8), 76.58(2),
		103.42(2), 112.577(8), 180
Cs ₉ InO ₄	105.9(3), 111.3(1)	68.380(7), 74.75(1),
		105.26(1), 111.620(7), 180
Verbindung	A(1)-A(4)-A(2)	A(2)–A(4)–A(2)
Cs ₉ AlO ₄	42.77(3), 70.00(4),	90, 180
· ·	110.00(4), 137.23(3)	
Cs9GaO4	43.363(7), 69.561(8),	90, 180
	110.439(8), 136.637(7)	
Cs ₉ ScO ₄	44.178(8), 69.553(9),	90, 180
	110.45(1), 135.822(8)	
Cs ₉ FeO ₄	43.50(2), 69.33(3),	90, 180
	110.67(3), 136.50(2)	
$Cs_9(In_xSc_{1-x})O_4$	44.476(7), 69.380(8),	90, 180
	110.620(8), 135.524(7)	
$Cs_9(Al_xIn_{1-x})O_4$	43.83(1), 69.52(1),	90, 180
	110.48(1), 136.17(1)	
(Rb _x Cs _{1-x})Cs ₈ GaO ₄	44.42(1), 69.28(1),	90, 180
	110.72(1), 135.58(1)	
$(Rb_xCs_{1-x})Cs_8InO_4$	45.632(9), 69.113(9),	90, 180
	110.887(9), 134.368(8)	
Cs ₉ InO ₄	44.686(6), 69.202(5),	90, 180
	110.798(5), 135.314(6)	

verschiedenen Säulentypen aufgebaut, die sich jeweils entlang der *c*-Achse erstrecken und die in der *ab*-Ebene alternierend gepackt sind, siehe Abbildung 2.

Der eine Säulentyp enthält Orthometallat-Anionen (MO_4)⁵⁻, die nur geringfügig von idealer Tetraedergestalt abweichen (siehe Tabelle 5). Die jeweils beobachteten M–O-Bindungslängen (siehe Tabelle 4) sind im Einklang mit denen, die in den zugehörigen "normalen", rein ionischen Orthometallaten beobachtet werden [7]. Die Orthometallat-Anionen bilden mit zwölf kuboktaedrisch angeordneten Caesiumatomen einen [Cs₁₂MO₄]-Cluster. Die Dominanz der M–O-Bindungen legt diese Beschreibung nahe; es sei jedoch auch auf den topologischen Bezug zu Suboxid- und Subnitrid-Clustern verwiesen. Im [Cs₁₂MO₄]-Cluster liegen vier kanten- und flächenverknüpfte A₅MO-Oktaeder mit dem zentralen Atom M vor. (Derartige [Cs₁₂MO₄]-Cluster sind in vielen Caesiumorthometallaten als lokale Strukturbausteine enthalten. Die Verknüpfung der Caesiumatome zu weiteren Orthometallat-Anionen bewirkt

Abbildung 2. Ansicht der Struktur der Suboxometallate vom A₉MO₄-Typ entlang [110]: $[Cs_{12}MO_4]$ - und $[CsCs_{12}]$ -Cluster (hellgrau, transparent bzw. dunkelgrau) sind jeweils entlang *c* über gemeinsame Flächen zu $[Cs_8(MO_4)]$ - und $[CsCs_8]$ -Säulen kondensiert, die in der *ab*-Ebene abwechselnd über gemeinsame Cs-Atome kondensiert sind. Die dunkelgrauen Polyeder sind durch Cs(4) zentriert. Die thermischen Ellipsoide repräsentieren 90 % elektronische Aufenthaltswahrscheinlichkeit.

in diesen eine rein ionische Bindung, wohingegen die $[Cs_{12}MO_4]$ -Cluster in den Suboxometallaten nur nach innen ionisch und nach außen metallisch gebunden sind). In einer Vielzahl von Subnitriden werden $[Ba_{14}CaN_6]$ - bzw. $[Ba_{14}LiN_6]$ -Cluster gefunden, die aus sechs flächenverknüpften Ba₅CaN- bzw. Ba₅LiN-Einheiten mit zentralem Ca bzw. Li-Atom bestehen. In den Suboxid-Clustern $[Rb_9O_2]$ und $[Cs_{11}O_3]$ liegen zwei bzw. drei flächenverknüpfte A₆O-Oktaeder vor (siehe Abbildung 3).

Die voranstehend beschriebenen $[Cs_{12}MO_4]$ -Cluster sind über gegenüberliegende Vierecksflächen zu $[Cs_8MO_4]$ -Säulen vom ersten Typ verknüpft. Der zweite Säulentyp besteht ebenfalls aus Cs_{12} -Kuboktaedern, die von einem weiteren Caesiumatom, das keinen Kontakt zum Anion hat, zentriert ist. Diese $[CsCs_{12}]$ -Cluster sind über gegenüberliegende Vierecksflächen zu $[CsCs_8]$ -Säulen verknüpft. Da die acht Caesiumatome der ersten und der zweiten Säule identisch sind, ergibt sich durch Kondensation der beiden Säulentypen die Summenformel Cs_9MO_4 .

Bei orientierenden Versuchen, Caesium durch Rubidium zu substituieren, wurde beobachtet, dass sich nur für die Position Cs(4) im Zentrum der [CsCs₁₂]-Cluster ein Ersatz realisieren lässt. Er ist in beiden untersuchten Fällen nicht vollständig und

Abbildung 3. Cluster aus verknüpften Oktaedern in Subverbindungen. a): zwei flächenverknüpfte Rb₆O-Oktaeder in Rb₉O₂, b): drei flächenverknüpfte Cs₆O-Oktaeder in Cs₁₁O₃, c): vier kanten- und flächenverknüpfte A₅MO-Oktaeder in A₉MO₄, d): sechs flächenverknüpfte Ba₅CaN-Oktaeder in Na₁₄Ba₁₄CaN₆ (das Calcium Atom befindet sich verdeckt im Zentrum des Clusters). Caesium: hellgrau, Sauerstoff: dunkelgrau, M: mittelgrau.

differiert von x = 0.52 in $(Rb_xCs_{1-x})Cs_8GaO_4$ bis x = 0.87 in $(Rb_xCs_{1-x})Cs_8InO_4$, wobei das Verhältnis von Rb/Cs in den Reaktionsmischungen jeweils nahe 1:1 lag. Die Ermittlung der Homogenitätsgebiete ist Gegenstand weiterer Untersuchungen.

Der Austausch der M-Kationen ist in großem Umfang möglich. Hierbei sind auch außergewöhnliche Orthometallat-Anionen zu beobachten. Das in Cs_9ScO_4 enthaltene Anion $(ScO_4)^{5-}$ ist das erste Beispiel eines Oxoscandats mit tetraedrischer Koordination des Scandiumatoms durch Sauerstoff. Sowohl reine Verbindungen Cs_9MO_4 mit M-Atomen sehr unterschiedlicher Größe als auch Substitutionsmischkristalle, in denen zwei verschiedene M-Atome statistisch einander vertreten, sind beobachtet worden. Dabei sind sowohl Substitutionen von M-Elementen mit stark differierenden (Al/In) und ähnlichen (Sc/ In) Ionenradien beobachtbar.

Bei einem Vergleich der Gitterkonstanten aller A₉MO₄-Verbindungen zeigt sich, dass eine Vergrößerung des Kationenradius $r_{\rm M}$ kaum Auswirkungen auf die Größe des *a*-, aber deutlichen Einfluss auf den *c*-Gitterparameter hat. Abbildung 4 ist zu entnehmen, dass dieser linear mit $r_{\rm M}$ zunimmt. Der gefundene lineare Zusammenhang ermöglicht es, durch Extrapolation Shannon-Radien für In³⁺ und Sc³⁺ in tetraedrischer Koordination anzugeben: $r_{\rm Shannon}^{\rm IV}({\rm Sc}^{3+}) \approx 59$ pm und $r_{\rm Shannon}^{\rm IV}({\rm In}^{3+})$ ≈ 70 pm. Den gegenteiligen Effekt hat der partielle Ersatz des Caesiumatoms Cs(4) durch Rubidium. Die Werte für *c* in (Rb_xCs_{1-x})Cs₈GaO₄ (*x* = 0.57) und in (Rb_xCs_{1-x})Cs₈InO₄ (*x* = 0.87) sind nur geringfügig kleiner als in den entsprechenden reinen Caesiumverbindungen, wohingegen *a* deutlich verringert ist. Dies zeigt, dass in diesem Strukturtyp geometrische Veränderungen der Packung durch zwei unabhängige Anpassungen ausgeglichen werden können. Die Abmessungen der Alkalimetall-Teilstruktur bestimmen die Ausdehnung der *ab*-Ebene, während die Größe des $(MO_4)^{5-}$ -Anions den *c*-Gitterparameter definiert.

Abbildung 4. Einfluss der Substitution von A- und M-Kationen in den Suboxometallaten A₉MO₄ auf die Gitterparameter. Während mit steigendem Radius von M *a* konstant bleibt und *c* linear zunimmt, hat der partielle Ersatz von Caesium durch Rubidium eine Verkleinerung von *a*, aber fast keine Veränderung von *c* zur Folge. Shannon-Radien für In³⁺ und Sc³⁺ in tetraedrischer Sauerstoff-Koordination können durch Extrapolation erhalten werden (kursiv).

Die Verbindungen A9AlO4, A9GaO4, A9InO4, A9ScO4 und diejenigen mit Mischbesetzung der M-Atome können als thermodynamisch stabile Phasen angesehen werden. Für Cs₉InO₄ wurde kongruentes Schmelzverhalten bei 224(3) °C beobachtet [2], siehe Abbildung 6. Cs₉FeO₄ hingegen stellt ein thermodynamisch instabiles System dar. Die Reduktion von Fe^{III} zu Fe^{II} wurde bei höheren Temperaturen und längeren Reaktionszeiten beobachtet. In Differenzthermoanalysen (siehe Abbildung 6) zeigten Cs₉FeO₄-Proben beim erstmaligen Erhitzen einen exothermen Effekt bei 190(3) °C, der sowohl beim Abkühlen als auch bei wiederholtem Erwärmen nicht wieder beobachtet wurde. Diesem Effekt kommt die irreversible Reduktion von Fe^{III} zu Fe^{II} zu. Proben, die nach den DTA-Experimenten pulverdiffraktometrisch und mit EDX untersucht wurden, bestanden aus einem Gemenge verschiedener Caesiumoxoferrate, von welchen bislang nur Cs₆Fe₂O₅ [8] und Cs₄FeO₃ [5] bekannt sind. Temperaturabhängige pulverdiffraktometrische Aufnahmen nach der modifizierten Guinier-Technik [6] zeigen ebenfalls die irreversible Zersetzung von Cs₉FeO₄ bei 197(6) °C zu größtenteils unbekannten Caesiumoxoferraten (Abbildung 5).

Das Vorliegen von Fe^{III} in Cs₉FeO₄ wird anhand der strukturellen Details des $(FeO_4)^{5-}$ -Anions deutlich: die Fe–O-Bindungslängen (190(2) pm) sind sowohl in Einklang mit der Summe der Shannon-Radien (189 pm, [9]) als auch mit den in

Abbildung 5. Oben: Temperaturabhängige Guinier-Aufnahmen von $C_{s_9}FeO_4$ (Cu- K_{a_1} -Strahlung, Aufheizrate 5.7 °C·h⁻¹). Die integrierten Linienprofile sind für Raumtemperatur und für 220 °C eingezeichnet. Bei 197(6) °C verschwindet das Beugungsdiagramm von $C_{s_9}FeO_4$ und ein Beugungsdiagramm, das von einem Gemenge verschiedener Caesiumoxoferrate stammt, bleibt beim Abkühlen erhalten. $C_{s_4}FeO_3$ ist das einzige bekannte Oxoferrat, das identifiziert werden konnte. Unten: Gemessenes und berechnetes Pulverdiagramm (Raumtemperatur, gemessen in Mo- K_{a1} -Strahlung, zur Auswertung umgerechnet auf Cu- K_{a1} -Strahlung) einer Probe $C_{s_9}FeO_4$. Der Untergrund ist durch Beimischung von Glaspulver verfälscht.

Orthoferraten(III) beobachteten Bindungslängen (α -Cs₅FeO₄: 188.3–191.3 pm, β -Cs₅FeO₄: 188.9–190.4 pm [7]).

Die hohe Flexibilität des A₉MO₄-Strukturtyps bietet die Möglichkeit, unterschiedliche M-Kationen, deren Ionenradius über einen weiten Bereich streuen kann, einzubauen. Selbst

Abbildung 6. Aufheizkurven der DTA-Messungen von Cs_9InO_4 (oben) und Cs_9FeO_4 (unten).

ungewöhnliche $(MO_4)^{5-}$ -Anionen, wie anhand der Verbindung Cs_9ScO_4 gezeigt werden konnte, lassen sich stabilisieren. Ausgehend von dieser Beobachtung und der Möglichkeit, selbst thermodynamisch instabile Systeme wie Cs_9FeO_4 durch Wahl geeigneter Synthesebedingungen zu realisieren, sind noch weitere Vertreter dieses Strukturtyps zu erwarten. Zukünftige Untersuchungen sollen zeigen, ob derartige Suboxometallate nicht nur mit dreiwertigen M-Kationen, sondern auch mit zwei-, vier- oder höherwertigen existieren. Von dem hier beschriebenen A₉MO₄-Typ abweichende Strukturen sind dann zu erwarten. Ausgehend von Verbindungen dieses Typs sind, wie die in der Bildung von Cs₄FeO₃ endende Thermolyse von Cs₉FeO₄ gezeigt hat, neue Oxometallate zugänglich, so dass auch hier in Zukunft eine Vielzahl neuer Strukturen zu erwarten ist.

Danksagung

Wir danken Herrn *R. Eger* für Differenzthermoanalysen, Frau *C. Kamella* für EDX-Analysen und Herrn *W. Hölle* für temperaturabhängige Pulverdiffraktometrie.

Literatur

- a) A. Simon, Struct. Bonding (Berlin) 1979, 36, 81; b) P. E. Rauch, A. Simon, Angew. Chem. 1992, 104, Angew. Chem. Int. Ed. Engl. 1992, 31, 1519; c) G. J. Snyder, A. Simon, J. Am. Chem. Soc. 1995, 117, 1996; d) V. Smetana, B. Babyzhetskyy, G. V. Vajenine, A. Simon, Inorg. Chem. 2006, 45, 10786; e) P. Höhn, G. Auffermann, R. Ramlau, H. Rosner, W. Schnelle, R. Kniep, Angew. Chem 2006, 118, Angew. Chem. Int. Ed. 2006, 45, 6681.
- [2] C. Hoch, J. Bender, A. Simon, Angew. Chem. 2009, 121, Angew. Chem. Int. Ed. 2009, 48, 2415.
- [3] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, 2nd ed., Vol. 1, F. Enke, Stuttgart 1962, p. 978.
- [4] A. Simon, Z. Anorg. Allg. Chem. 1973, 395, 301.
- [5] C. Hoch, J. Bender, A. Wohlfarth, in Vorbereitung.
- [6] A. Simon, J. Appl. Crystallogr. 1970, 3, 11.
- [7] a) M. G. Barker, P. G. Gadd, M. J. Begley, J. Chem. Soc. 1981, 1981, 379; b) D. Fink, R. Hoppe, Z. Anorg. Allg. Chem. 1975, 414, 193; c) M. Lulei, R. Hoppe, Z. Anorg. Allg. Chem. 1994, 620, 210; d) G. Frisch, C. Röhr, Z. Anorg. Allg. Chem. 2005, 631, 507.
- [8] H.-P. Müller, R. Hoppe, Z. Anorg. Allg. Chem. 1992, 619, 193.
- [9] R. D. Shannon, Acta Crystallogr., Sect. B 1969, 25, 925.
- [10] R. Rieck, R. Hoppe, Naturwissenschaften 1974, 61, 126.
- [11] a) X-AREA V. 1.39 2006, Stoe & Cie., Darmstadt; b) X-SHAPE V. 2.07 2005, Stoe & Cie., Darmstadt; c) X-RED V. 1.31 2005, Stoe & Cie., Darmstadt; d) G. M. Sheldrick, SHELXS97 und SHELXL97 1997, Universität Göttingen; e) M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139.

Eingegangen: 2. April 2009 Online Veröffentlicht: 16. Juni 2009