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Introduction 

E7016 (3) is an inhibitor of poly (ADP-ribose) polymerase 
currently being investigated clinically as a potential anticancer 

therapy.  A key intermediate in the synthesis of E7016 is benzylic 

bromide 2, which is prepared via bromination of methylxanthene 
1.  The original process for bromination of 1 employed N-

Bromosuccinimide in dichloromethane with benzoyl peroxide as 

radical initiator.  This process was employed on kilogram scale to 

deliver an early batch of E7016.  During the implementation of 
this first-generation process, several problems were identified 

that would require resolution to enable a robust process for future 

synthesis of E7016.   

 

Scheme 1. Bromination en route to E7016 

 

Results and Discussion 

   The first-generation bromination process transferred to our 
department had several challenges.   First, the reaction generated 

substantial quanitities (>15%) of dibromide 4 in addition to the 
desired monobromide (2) requiring multiple reslurries to upgrade 

the purity of 2.  Second, the radical reaction was prone to 

stalling, requiring repeated fresh charges of benzoyl peroxide and 

N-bromosuccinimide to re-initiate the reaction. Finally, the 
reaction used a halogenated solvent (dichloromethane) and 

required multiple chases with ethanol to accomplish solvent 

exchange resulting in a significant organic waste stream.   

At the outset of our studies, we were attracted to a salt-based 
bromination reagent reported by Adimurthy et al.

1
  This reagent 

(5:1 NaBr/NaBrO3), the precursor of liquid bromine via cold 
process manufacture, liberates bromine upon acidification.  The 
ratio of NaBr to NaBrO3 can also be adjusted using NaOCl via a 

redox process according to: 

5 NaBr + NaBrO3 + 3 NaOCl → 4 NaBr + 2 NaBrO3 + 3 NaCl 

This allows one to achieve an optimal mixture for specific 
bromination reactions.

2
  We recognized that this reagent would 

afford superior atom economy
3
 compared to N-

bromosuccinimide, which generates a substantial organic by-
product in succinimide.  Further, since this reagent was salt-
based, it could be eliminated in the aqueous waste stream.  

Our initial experiments (Table 1) focused on the optimization of 
this reagent for the bromination of 1 in the current 
dichloromethane (10 mL/g) reaction solvent.  After some 
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experimentation, it was found that the 5:1 mixture of 

NaBr/NaBrO3 derived from the bromine cold manufacturing 
process was useful directly in this process (entries 2-8), using 
NaOCl and HCl as co-reactants as described by Adimurthy et al.

2
  

Importantly, the reaction was confirmed to be photoinitiated by 
two experiments conducted in the dark to prevent photoinitiation 
(entries 6 & 7).  Adapting the process to a production 
environment with closed reactors and thus limited ambient light 
would require chemical initiation.  Since it was desirable to 
conduct the reaction at near-ambient temperatures, we introduced 
the initiator V-70 to good effect (entry 8).

4
  

Table 1. – Evaluation of NaBr/NaBrO3 Brominating Reagent as 
Substitute for N-Bromosuccinimide in Dichloromethane  

Entry 
Equiv 

NaBr/NaBr
O3 (ratio) 

Equiv 
NaOCl 

Equiv 
HCl 

T 
(ºC) 

Other  

Product Distribution 
at End of Reaction 

(%) 

1 2 4 

1 

1.1 equiv 

NaBr/NaBrO3  

(2:1) 

0 1.1 22 - 16 64 12 

2 

2.0 equiv.    

NaBr/NaBrO3 

(5:1) 

1.0 2.2 22 - 1 74 5 

3 
1.8 eq. 

NaBr/NaBrO3 

(5:1), 

0.9 2.0 22 - 5 84 11 

4 
1.8 eq. 

NaBr/NaBrO3 
0.9 1.1 22 - 6 82 12 

5 

1.8 eq. 

NaBr/NaBrO3 

(5:1) 

0.9 1.1 0 - 5 87 8 

6 

1.8 eq. 

NaBr/NaBrO3 

(5:1) 

0.9 1.1 22 In the dark 100  0 0 

7 

1.8 eq. 

NaBr/NaBrO3 

(5:1) 

0.9 1.1 40 In the dark 100  0 0 

8 
1.8 eq. 

NaBr/NaBrO3 

(5:1) 

0.9 1.1 22 

In the dark 

+ V-70 

initiator 

(0.1equiv) 

 

10  
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While these new reaction conditions afforded reliable 
bromination without need of N-bromosuccinimide, the problems 
of significant dibromination,  chlorinated solvent use, and an 
organic solvent-intensive workup remained.  We theorized that 
one cause of dibromination might be the solubility of the initial 
monobromide product 2 in the reaction solvent. Exposure of 2 to 
additional brominating agent within the reaction matrix would 
presumably give rise to 4.   With this in mind, we assessed the 
solubilities of the starting material 1 and monobromide 2 in 
several solvents in an effort to identify a solvent(s) that might 
solubilize 2 to a lesser extent than 1 and potentially have less 
environmental impact than dichloromethane.   

Table 2 shows absolute and relative solubility data for 1 and 2 in 
three solvents that also afforded reasonable extent of reaction for 
the bromination. The cost of each solvent from a commmon 

chemical supplier are also listed.
5 

Table 2. – Solubility Data for 1 and 2 in Several Organic 
Solvents Compatible with NaBr/NaBrO3 Bromination Reaction 

Compound 

Solubility Data 

DCM 

($45/L) 
Chlorobenzene 

($80/L) 
α,α,αα,α,αα,α,αα,α,α-

Trifluorotoluene 
($51/L) 

Starting Material 1 125 mg/mL 83 mg/mL 19 mg/mL 

Monobromide 2 104 mg/mL 47 mg/mL 5 mg/mL 

Relative Solubility ½ 1.20 : 1 1.76 : 1 3.8 : 1 

As can be seen from Table 2, α,α,α-trifluorotoluene (TFT, a.k.a. 
trifluoromethylbenzene) afforded preferential solubility for 
starting material 1 over the desired monobrominated product 2, 
while reducing overall solubility.  It was hoped that reaction 
conditions could be found where 2 might crystallize directly from 

the reaction mixture, reducing the formation of dibromide 4 and 
providing a simple isolation procedure for 2 that would mitigate 
additional solvent use for extraction and solvent exchange.  
Additionally, α,α,α-trifluorotoluene has received attention as a 
green solvent alternative to halogenated hydrocarbons such as 
dichloromethane.

6
 

Adapting the optimal reaction conditions in dichloromethane to 
this new solvent revealed that, at reasonable volumes of α,α,α-
trifluorotoluene with water as co-solvent, reactivity could be 
maintained while simultaneously controlling levels of dibromide 
4.  Furthermore, the desired monobrominated product 2 could be 
isolated directly by filtration of the reaction mixture, thus 
eliminating the need for additional solvent for extractions and 
chases.   

 

Table 3. – Optimization of NaBr/NaBrO3 Reaction Conditions in 
α,α,α-Trifluorotoluene (TFT) and Water Solvent System

a
 

Entry 
Equiv 

NaBr/NaBrO3 
(ratio) 

Equiv 
NaOCl 

Equiv 
HCl 

T 
(ºC) 

Volumes 
TFT 

(mL/g) 

Volumes 
Water 
(mL/g) 

Product 
Distribution at 

End of Reaction 
(%) 

1 2 4 

1 

1.8 eq. 

NaBr/NaBrO3 

(5:1) 

1.0 1.1 22 10 4 2 83 12 

2 
1.8 eq. 

NaBr/NaBrO3 

(5:1) 

1.0 1.1 22 5 4b 6 88 6 

3 

1.8 eq. 

NaBr/NaBrO3 

(5:1) 

1.0 1.1 22 5.5 8 4 88 8 

aAll reactions employed 0.1 equiv of V-70 initiator. 
bReaction mixture was viscous and difficult to stir using only 4 volumes of water. 

Scheme 2 and Table 4 show the results of a kilo-scale 
demonstration of this new bromination process.  The 
monobrominated product 2 was isolated directly from the 
reaction mixture with 93% HPLC purity, which is suitable for 
use directly in the downstream process as subsequent steps 
effectively control levels of residual 1 and 4.  A simple 
recrystallization procedure provides higher purity material if 
desired.

7
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MeO O

Br

1

1) 5:1 NaBr/NaBrO 3 (1.9 equiv)

NaOCl (0.95 equiv), HCl (1.2 equiv)

V-70 (0.04 equiv)

TFT (5.5 V), Water (8 V)

22 oC, 18h

2) Filter & Wash with Water (2V)

Optional Recrystallization :

Toluene/IPA 2:1 (6V), 80 - 22 oC

2

(75% overall yield recrystallized)

(89% yield)

 

Scheme 2.  Final Bromination Process 

Table 4. Results of Kilo-scale Demonstration of New 
Bromination Process 

Product Distribution at 
End of Reaction (%) 

Isolated 
Yield 

Intial Isolated 
Purity 

(HPLC Area%) 

Overall 
Yield Post-
Recrystalli

zation 

Recrystallized 
Purity 

(HPLC Area%) 
Starting 
Material 

(1) 
2 4 

6 84 10 89%  
93% 

Residual 1:  5% 
Residual 4:  2% 

75% Yield 

98% 
Residual 1:  1.5% 
Residual 4:  0.2% 

 

A comparison of waste generated by the original and new 
bromination procedures is presented in Table 5.  The new 
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bromination procedure affords a significant reduction in overall 
waste and a 83% reduction in organic waste.  

Table 5. Waste Metrics for Original Bromination Procedure and 

New Bromination Procedure  

Original Bromination Process 

(N-bromosuccinimide, dichloromethane) 

New Bromination Process 

(NaBr/NaBrO3 5:1, NaOCl, HCl, 

Trifluorotoluene) 

Aqueous Waste 

(kg/kg 1) 

Organic Waste 

(kg/kg 1) 

Aqueous Waste 

(kg/kg 1) 

Organic Waste 

(kg/kg 1) 

2 39 16 6.5 

Total:  41 kg waste/kg 1 Total:  22.5 kg waste/kg 1 (45% reduction) 

 

In conclusion, we have developed and implemented a simple salt-
based bromination process for preparation of 2 that affords good 
reaction performance and selectivity while minimizing waste 
production. 
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