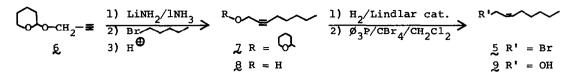
SYNTHESIS AND METABOLISM OF (±)-EICOSA-<u>CIS</u>-14,15-EPOXY-<u>CIS</u>-8,11-DIENOIC ACID

Rattan Sood, Michitaro Nagasawa and, Charles J. Sih

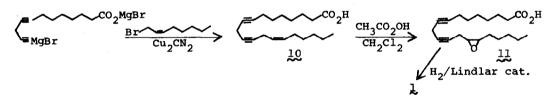
School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706

(Received in USA 17 September 1973; received in UK for publication 28 December 1973)

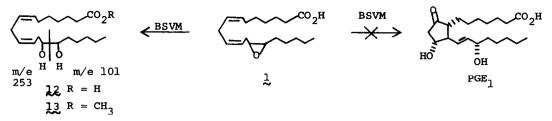

Epoxy polyunsaturated fatty acids have been proposed as possible intermediates in the enzymatic cyclization of polyunsaturated fatty acids into prostaglandins.¹ We wish to report a convenient synthesis of (\pm) -eicosa-<u>cis</u>-14,15epoxy-<u>cis</u>-8,11-dienoic acid (**L**), and results of our incubation studies of this compound in a prostaglandin synthesizing system of bovine origin.

Reaction of 7-bromoheptanoic acid² (2) with lithium acetylide (ethylenediamine complex) in dry DMSO afforded 8-nonynoic acid³ (3), b.p. 110-115°/0.05 mm (95% yield). The di-Grignard complex of 3 was condensed with propargyl bromide (15 hours at r.t.; Cu_2CN_2 as catalyst⁴) to give dodeca-8,11-diynoic acid, (4), b.p. 138-140°/0.05 mm, (52% yield)¹⁶; Pmr⁵: δ 3.2 (2H, m, $-\equiv -CH_2 - \equiv -$), 2.08 (1H, m, $-C\XiH$); IR⁶: 3300 cm⁻¹ ($-C\XiC-H$), 1705 (-C=0); λ_{max} (MeOH), 260 nm (ϵ 842).

$$\begin{array}{ccc} Br & CO_2^{H} & \underline{\text{Li} \equiv CH} \\ 2 & DMSO \end{array} \equiv \begin{array}{ccc} CO_2^{H} & \underline{1} & C_2^{H} & \underline{\text{MgBr}} \\ 2 & \underline{2} & \underline{2} & \underline{2} & -CH_2^{Br}; \end{array} = \begin{array}{ccc} CO_2^{H} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} \\ 4 & \underline{2} \\ 4 & \underline{2} \\ 4 & \underline{2} & \underline{2}$$


The complementary synthon, 1-bromo-oct-<u>cis</u>-2-ene (5) was prepared as follows: Tetrahydro-2- (prop-2'-ynyloxy)pyran⁷ (6) was treated with lithium amide in (1) NH₃ and coupled with 1-bromopentane to yield χ (85% yield). Oct-2-yn-1ol, (g), b.p. 78-80°/2 mm (lit.⁸, b.p. 74-78°/2 mm), obtained via acidic hydrolysis of χ , was hydrogenated over Lindlar's catalyst in Skelly B to give oct-<u>cis</u>-2-en-1-ol⁹, (2). Addition of triphenylphosphine to a mixture of χ and carbon tetrabromide in dichloromethane¹⁰ afforded ξ , b.p. 58-60°/0.1 mm (81% yield). IR spectrum showed only traces of <u>trans</u> double bond at 965 cm⁻¹.

The di-Grignard reagent from 4 was condensed⁹ with 5 in THF (20 hrs, r.t., Cu_2CN_2 as catalyst) to give eicosa-<u>cis</u>-14-ene-8,11-diynoic acid (10) in 40% yield¹⁶; Pmr: δ 2.91 (2H, m, C-13), δ 3.13 (2H, m, C-10) and δ 5.46 (2H, m, vinylic protons at C-14 and C-15); IR^6 : 2205 cm⁻¹ (-C=C-), 1705 (-C=O), 1310 (-CH₂-C=C-);


 λ_{\max} (MeOH): 272 nm (ϵ 409), 310 (ϵ 210). Treatment of 10 with peroxyacetic acid in dichloromethane (30 hr, 0° C) gave the crystalline epoxide, 11, m.p. 42-45° (30% yield)¹⁶. In the pmr, the C-14 and C-15 methine protons were located between δ 2.64-3.68 overlapping the multiplet of the C-10 methylene at δ 3.16, IR⁶: 2200 cm⁻¹ (-C=C-), 1705 (-C=O), and 1310 (-CH₂-C=C-).

Hydrogenation¹¹ of 11 over Lindlar catalyst afforded the desired (±)eicosa-<u>cis</u>-14,15-epoxy-8,11-dienoic acid (1) (43% yield).¹² Pmr: δ 5.40 (4H, m, olefinic protons), 2.56-3.08 (m, 4H, C-10, C-14, C-15); IR⁶: 1705 (-C=O), 965 cm⁻¹ (traces, <u>trans</u> double bond), 680 cm⁻¹ (<u>cis</u> double bond); λ_{max} (MeOH): 230 nm (€ 695), 272 (€ 128). Mass spectrum of its methyl ester gave peaks at m/e 305 (M-31) and m/e 222 (M-114).

When 1 was exposed to bovine seminal vesicle microsomes¹³ (BSVM) in the presence of GSH and epinephrine, no significant quantities of PGE₁ was detectable¹⁴; in contrast, under these conditions, all <u>cis</u>-8,11,14-eicosatrienoic acid (12) was readily converted into PGE₁ in efficient yields (65%). Instead, 1 (14 mg) was converted to a more polar product, (2.5 mg) characterized as eicosa-14, 15-dihydroxy-<u>cis</u>-8,11-dienoic acid (12).¹⁵ The mass spectrum of its methyl ester, 13 gave the parent ion at m/e 354 with other pertinent peaks at m/e 305 (M-49; -(CH₃O+H₂O)); m/e 253 (M-101; -(HOCH-(CH₂)₄CH₃)).

This observation suggests that <u>cis</u>-epoxy polyunsaturated fatty acids are unlikely <u>free</u> biosynthetic prostaglandin intermediates in the mammalian system. The synthesis of (\pm) -eicosa-<u>trans</u>-14,15-epoxy-<u>cis</u>-8,11-dienoic acid is currently in progress.

Acknowledgment

Financial support from National Institutes of Health Grant No. AM-4874 and AM9688 is acknowledged.

Footnotes and References

- 1. F. D. Gunstone, Chem. and Ind., 1551 (1966).
- 2. D. E. Ames, R. E. Bowman and K. G. Mason, J. Chem. Soc., 174(1950).
- 8-Nonynoic acid had previously been prepared in 35% yield by coupling 7bromoheptanoic acid with sodium acetylide in liq. NH₃ (see A. A. Kraevskii, G. I. Myagbova, V. V. Dorogor, I. B. Afanosev, I. K. Sarycheva, and N. A. Pereobrazhenskii, J. <u>Gen</u>. <u>Chem</u>., U.S.S.R. <u>34</u>, 1171(1964)).
- 4. J. B. Osbond, P. G. Philpott and J. C. Wickens, J. Chem. Soc., 2779(1961).
- 5. Pmr were recorded on a 60 Mc Varian spectrometer in $CDCl_3$ with TMS as internal standard. Spectral data were in complete agreement with assigned structures.
- 6. IR showed no allenic impurity in the region $2100-1900 \text{ cm}^{-1}$ and around 850 cm^{-1} (characteristic of terminal allenes).
- 7. H. B. Henbest, E. R. H. Jones and I. M. S. Walls, <u>J. Chem. Soc.</u>, 3646 (1950).
- a) W. Rowland and F. M. Strong, <u>J. Amer. Chem. Soc.</u>, <u>72</u>, 4263 (1950).
 b) J. H. Wotiz and J. A. Webster, <u>J. Org. Chem.</u>, <u>21</u>, 1536 (1956).
- 9. J. Osbond, J. Chem. Soc., 5270 (1961).
- a) R. G. Weiss and E. I. Snyder, <u>J. Org. Chem.</u>, <u>36</u>, 403 (1971).
 b) J. S. McKennis, L. Brener, J. S. Ward, and R. Pettit, <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>93</u>, 4957 (1971).
- 11. A. Steenhoek, B. H. Van Wijngaarden, and H. J. J. Pabon, <u>Rec. Trav. Chim.</u>, <u>90</u>, 961(1971).
- 12. The compound was chromatographed on silica gel and its homogeneity was established by developing the silver nitrate impregnated thin layer plates using chloroform-acetone (8:2) and EtOAc-isooctane-HOAc-H₂O (110:50:20:100).
- 13. C. Takeguchi, E. Kohno, and C. J. Sih, Biochemistry, 10, 2372(1971).
- 14. The sensitivity limit of our detection method for PGE1 is in the order of 5 μg (see ref. 13).
- 15. The enzymatic nature of this conversion was established by the observation that boiled BSVM failed to convert 1 into 13.
- 16. Owing to the rapid autoxidation, several samples gave unsatisfactory C and H analyses.