[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AT THE OHIO STATE UNIVERSITY]

Ionization Constants of Fluorinated Acids. III. Unsaturated Acids

By Albert L. Henne and Charles J. Fox RECEIVED JULY 29, 1953

The unsaturated acids CF₁CH=CHCO₂H, CH₂=CF-CO₂H, CF₂=CH-CO₂H and CF₂=CF-CO₂H were synthesized, and their average $K_A \times 10^5$ determined as 45, 280, 68 and 1580. An interpretation of these low values is proposed.

The effect of a CF₃ group on the ionization of the CF₃(CH₂)_nCO₂H series has been reported in a previous paper1 and in a note2; it was found substantially proportional to the square of the distance separating the CF₃ from the ĈO₂H.

In the present paper, fluorinated acids with unsaturation in the alpha position have been synthesized and their dissociation constants measured. Two groups have been considered: (1) trifluorocrotonic acid, CF₃CH=CHCO₂H, where the fluorine is outside the double bond system, i.e., is not vinylic; (2) fluorinated acrylic acids, CH2=CF-CO₂H, CF₂=CH-CO₂H and CF₂=CF-CO₂H, in which all fluorines are vinylic, and which are not complicated by geometrical isomerism.

The results, expressed as $K_A \times 10^5$, have been interpreted as follows: (1) CF₃CH=CHCO₂H, with a value of 45 cannot be regarded as a mere vinylog of CF₃CO₂H, 55,000. Three other recent determinations³⁻⁵ of this K_A were reported as 70, 71 and 33, respectively, values which confirm by their order of magnitude that vinylogy is out of the question. Clearly the inductive effect of the CF₃ is poorly relayed by the adjacent double bond. As the samples might differ by geometrical iso-

merism (see Experimental) a finer interpretation would be unwarranted. Chlorinated cis-trans analogs are known⁶ to differ by similar ratios. (2) The fluorinated acrylic acids showed the following order of magnitude for $K_{\rm A} \times 10^5$ (with details in Table I): CH₂=CF-CO₂H, 280; CF₂=CH-CO₂H, 68 and CF₂=CF-CO₂H, 1580. Remembering that acrylic acid (5.6) is only slightly more acidic than propionic acid (1.3), one can consider a somewhat similar relationship between CH₂= CF—CO₂H (280) and CH₂FCO₂H (220), and regard the main effect of fluorine in the alpha position as induction. The very low value for CF₂=CH-CO₂H (68) is however better explained by overriding mesomerism, conventionally symbolized as

$$\begin{array}{c} F & \oplus F & \ominus \\ \hline C = CHCO_2H & \longleftrightarrow & C - CH - CO_2H & \longleftrightarrow \\ F & \oplus F & OH \\ \hline C - CH = C \\ \hline F & O\ominus \\ \end{array}$$

In perfluorinated acrylic acid, CF2=CF-CO2H, the higher value (1580) shows an induction of greater importance, with mesomerism probably

- (1) A. L. Henne and C. J. Fox, This Journal, 73, 2323 (1951).
- A. L. Henne and C. J. Fox, ibid., 75, 5750 (1953).
 R. N. Haszeldine, J. Chem. Soc., 922 (1953).
 H. N. Walborsky, This Journal, 75, 3241 (1953).

- (5) E. T. McBee, O. R. Pierce and D. D. Smith, ibid., paper in preparation. (1953).
- (6) H. J. Backer, Rec. trav. chim., 54, 167 (1935); also W. Ostwald, Z. physik. Chem., 3, 245 (1889).

interfered with; mesomerism, however, must still be of consequence, because CF₂=CF-CO₂H (1580) is a much weaker acid than CCl₂=CCl-CO₂H (6200).

The synthesis of the acids proved difficult. CF₃CH=CHCO₂H was made by adding CCl₃Br to CF₃CH=CH₂ under free radical conditions to obtain CF₃CHBrCH₂CCl₃, then heating the latter for 12 hours at 125° in 96% H₂SO₄ to cause simultaneous dehydrobromination and hydrolysis of the CCl₃ group; Haszeldine's synthesis³ is equivalent. The fluorinated acrylic acids were all synthesized by sequences which ended with the creation of a double bond in the free acids; this was due to the fact that the β -fluorinated acrylic acids are quite sensitive to hydrolysis; to proceed by any sequence calling for liberation of the acid function as its last step, such as the saponification of a fluorinated acrylate or the hydrolysis of an acrylonitrile was therefore to be avoided. The sequences finally adopted, after many trials, were: (a) CH₂=CH- $CO_2Me \rightarrow CH_2Br-CHBr-CO_2Me \rightarrow CH_2=CBr CO_2Me \rightarrow CH_2Br-CBr_2-CO_2Me \rightarrow CH_2Br-CBrF-CO_2Me \rightarrow CH_2Br-CBrF-CO_2H \rightarrow CH_2=CF CO_2H$; (b) $CF_3-CH_2-CO_2H \rightarrow CF_2=-CH-CO_2H$; (c) $CF_2 = CFC_1 + CHC_{13} \rightarrow CF_2C_1 - CFC_1 - CHC_{12}$ \rightarrow CF₂Cl-CF=CCl₂ \rightarrow CF₂Cl-CFBr—COCl \rightarrow CF_2CI -CFBr- $CO_2H \rightarrow CF_2$ -CF- CO_2H .

In general these reactions were conventional. The main innovation was the oxidation-bromination of CF₂Cl-CF=CCl₂ to the acyl chloride CF₂Cl-CFBr-COCl. It has been postulated that oxidation-chlorination proceeds through an epoxide formation (eq. 1) followed by a rearrangement (eq. 2a or 2b)

$$CF_{2}CI-CF=CCl_{2} \xrightarrow{[O]} CF_{2}CI-CF-C \qquad (1)$$

$$CF_{2}CI-CF-C \qquad -O \qquad CF_{2}CI-CFCI-C-Cl \qquad (2a)$$

$$CIF_{2}CI-CF_{2}CI-CFCl_{2} \xrightarrow{O} FC-CCl_{2}-CF_{2}Cl \qquad (2b)$$

However, when oxidation-chlorination was tried, only CF_2Cl -CFCl- CO_2H was obtained. It was then reasoned that the rearrangement of the epoxide might not be a strictly intramolecular process, but might involve an attack by a chlorine atom on the middle carbon followed by liberation

(7) D. W. Chaney, U. S. patents 2,456,768 (1946) and 2,514,473 (1948).

of another chlorine atom from the end carbon, equation 3

$$\begin{array}{c} \text{Cl} & \text{Cl} \\ \text{Cl} + \text{CF}_2\text{Cl} - \text{CF} - \text{C} \\ & \rightarrow \text{CF}_2\text{Cl} - \text{CF} - \text{C} \\ & \rightarrow \text{Cl} \\ \text{Cl} & \text{Cl} \\ & \text{Cl} \\ & \text{CF}_2\text{Cl} - \text{CFCl} - \text{CCl} + \text{Cl} \\ & \text{Cl} \\ \end{array}$$

This new interpretation permitted the hope that the use of an attacking bromine atom would allow equation 4

$$\begin{array}{c} Cl & Cl \\ Br \cdot + CF_2Cl - CF - C & \longrightarrow CF_2Cl - CF - C & \longrightarrow \\ Cl & Br \ O \cdot \ Cl & \\ CF_2Cl - CFBr - CCl + Cl \cdot \ (4) \\ \end{array}$$

The liberated chlorine atom could, of course, cause reaction (eq. 3). Actually, a mixture of CF₂Cl-CFBrCO₂H and CF₂ClCFClCO₂H was obtained in the molar ratio of 1:1.2.

The physical measurements were made as previously described. The results are tabulated below. Thermodynamic ionization constants were calculated in a conventional manner. 8

Table I $\label{eq:table_table_table} \text{Ionization Constants in Water at 25°, } K \times 10^{\text{5}}$

	Fre	om þH	Classical	Thermo- dynamic
CF ₃ CH ₂ CO ₂ H			93.9 ± 0.9	
$CF_3(CH_2)_2CO_2H$	7.0	± 0.11	6.98 ± 0.03	6.62 ± 0.05
CF ₂ (CH ₂) ₃ CO ₂ H	3.2	$\pm 0.03^{2}$		
CF2CH=CH-CO2H	45	± 0.6		
	70	$\pm 2^3$		70 ± 5^{3}
	71	± 14		
	335			
$CF_2 = CH - CO_2H$	68	± 1		
$CH_2 = CF - CO_2H$	270	± 3	306 ± 6	279 ± 3
CF2=CF-CO2H			1570 ± 10	1610 ± 70
CH₂F—CO₂H			218 ± 2	161 ± 29
CCl2=CCl-CO2H			7000 ± 100	5440 ± 500

Acknowledgment.—The junior author expresses his thanks to the Socony-Vacuum Oil Company, whose 1951–2 Fellowship permitted him to complete the present work as his Ph.D. dissertation.

Experimental

1.0 Preparation of CF₃CH=CHCO₂H.—This synthesis was carried out by Dr. Maxwell Nager.¹¹ Hydrolysis of CF₃CHBrCH₂CCl₃ was carried out in 96% H₂SO₄ at 125° for 12 hours. Evolution of HCl, HBr and Br₂ was observed; no hydrolysis of the CF₃ group occurred. After quenching, the organic products are extracted with ether, and recrystallized from petroleum ether to give an insoluble fraction of CF₃CHBrCH₂CO₂H, m.p. 132-134°, and a soluble fraction of CF₃CH=CHCO₂H, m.p. 49.5-50.5°. *Anal.* Calcd.: C, 34.30; H, 2.16; neut. equiv., 140. Found: C, 33.74; H, 2.30; neut. equiv., 140.1. Haszeldine's sample was reported to melt at 51° and to show strong infrared bands at 6.00 and 10.28 μ attributed to the *trans* —CH=CH—group. Walborsky's sample melted at 54-55°, and no claim

was made as to its geometry. McBee's sample melted at 55-56°

2.0 Preparation of 2-Fluoroacrylic Acid, CH₂=CF-CO₂H.

2.1 Preparation of CH₂BrCHBrCO₂CH₃.—Methyl acrylate containing hydroquinone (880 g., 10.2 moles) in CH₃OH (500 ml.) is brominated with commercial Br₂ (1630 g., 10.2 moles) as described in the literature. Distillation gives CH₂BrCHBrCO₂CH₃ (2311 g., 9.4 moles, 92% yield) b.p. 96–102° at 21 mm.

2.2 Preparation of CH₂BrCBr₂CO₂CH₃.—The dehydro-halogenation of CH₂BrCHBrCO₂CH₃ was best carried out by the method of Marvel. ¹² Quinoline (129 g., 1 mole) and CH₂BrCHBrCO₂CH₃ (246 g., 1 mole) are mixed in a nitrogen atmosphere and the pressure reduced to 10 mm. When quinoline hydrobromide precipitates heat is applied and CH₂—CBrCO₂CH₃ distilled. The ester is dissolved in CHCl₃ (300 ml.) containing LiCl (0.5 g.) and hydroquinone, and Br₂ (160 g., 1 mole) is added slowly while stirring. The bromination reaction is initiated by illuminating with a "sun lamp" but this is not essential. The CHCl₃ solution is treated with aqueous Na₂SHO₃ to remove excess Br₂, washed with H₂O, saturated NaCl, and dried over anhydrous MgSO₄. Distillation gives CH₂BrCBr₂CO₂CH₃ (174 g., 0.535 mole, 56% over-all yield in 96% conversion), b.p. 93-95° at 5 mm.

2.3 Fluorination of CH₂BrCBr₂CO₂CH₃ with HgF₂.— Mercuric fluoride (91 g., 0.38 mole) and CH₂BrCBr₂CO₂CH₃ (278 g., 0.85 mole) are stirred at 5 mm. and heated slowly to 140° and the crude product distilled with no attempt to fractionate. The distillate (205 g.) is diluted with ether (100 ml.), washed with dilute HCl, H₂O and saturated NaCl, and dried over anhydrous MgSO₄. Distillation gives CH₂-BrCBrFCO₂CH₃ (64 g., 0.24 mole, 24% yield on 66% conversion), b.p. 76–78° at 9 mm., n²⁷D 1.4885, d²⁷₄ 1.99, M_R 38.2, AR_F 1.44 and CH₂BrCBr₂CO₂CH₃ (92 g., 0.28 mole).

2.4 Saponification of CH₂BrCBrFCO₂CH₃.—Sodium bicarbonate (21.6 g., 0.26 mole) in H₂O (600 ml.) and CH₂BrCBr₂CO₂CH₃.

2.4 Saponification of CH₂BrCBrFCO₂CH₃.—Sodium bicarbonate (21.6 g., 0.26 mole) in H₂O (600 ml.) and CH₂Br-CBrFCO₂CH₃ (64 g., 0.24 mole) are stirred at room temperature until one phase is present (10 days). The aqueous solution is acidified with dilute H₂SO₄ and continuously extracted with ether. Ether is removed, and H₂O is removed from the residue by azeotropic distillation with benzene. Distillation of the dark residue gives CH₂BrCBrFCO₂H (45 g., 0.18 mole, 75% yield), b.p. 105° at 5 mm., sublimes under reduced pressure at ca. 70°, m.p. 71.0–72.5°, 247 neut. equiv. (calcd. 249.8).

2.5 Dehalogenation of CH₂BrCBrFCO₂H.—A solution of CH₂BrCBrFCO₂H (10 g., 0.04 mole) in ether (300 ml.) is stirred with powdered Zn (3 g., 0.046 mole) and refluxed (8 hours). Appreciable precipitate is evident and the solution is filtered. Ether is removed under reduced pressure (H₂O aspirator) and carries some unsaturated product. The residue is placed in a sublimation apparatus and the product sublimed. Reduced pressure facilitates removal of the product from the viscous residue. CH₂=CFCO₂H (2 g., 0.022 mole, 55% yield), resublimed three times, m.p. 51.5-52° found 20.65% F (calcd. 21.10% F), neut. equiv. 91.3 (calcd. 90.05), is obtained as colorless crystals which on fusion with Na give a negative test for Br⁻. The yield is lowered by each sublimation. The residue after sublimation is quite viscous and after standing (7 days) at room temperature the sublimed product is an amorphous powder which softens and darkens at 130-140°.

which softens and darkells at 150-140.

2.6 Alternate Attempt: Fluorination of CH₂BrCHBr-CO₂CH₃ with HgF₂.—Mercuric fluoride (150 g., 0.63 mole) and CH₂BrCHBrCO₂CH₃ (150 g., 0.61 mole) are stirred at 150 mm. and the temperature raised slowly. Reaction starts vigorously at 130° and reducing pressure to 120 mm. causes evolution of furnes and solidification of the mixture. Distillation is interrupted, additional CH₂BrCHBrCO₂CH₃ (100 g., 0.4 mole) added and the crude product (156 g.), b.p. 100° at 120 mm., is distilled. The distillate is washed with dilute HCl, H₂O, saturated NaCl, and dried over anhydrous MgSO₄. Distillation gives a monofluorinated product (92 g., 0.5 mole, 56% yield on 88% conversion), b.p. 92-94° at 80 mm., n³0D 1.4389, d³0, d³0, 4 1.624, M_R 30.0, A R_F 1.01, which is assumed to be CH₂BrCHFCO₂CH₃, and CH₂BrCHBrCO₂CH₃ (30 g., 0.12 mole). All attempts to remove hydrogen bromide from CH₂BrCHFCO₂CH₃ failed to give CH₂=CF-CO₂CH₃.

⁽⁸⁾ S. Glasstone, "Textbook of Physical Chemistry," 2nd Ed., D. Van Nostrand Co., Inc., New York, N. Y., 1946, p. 970.

⁽⁹⁾ F. Swarts, Bull. Acad. Roy. Belg., 681 (1896).
(10) J. Böeseken, Rec. trav. chim., 46, 844 (1927).

⁽¹¹⁾ Maxwell Nager, Ph.D. thesis, The Ohio State University, 1951, and laboratory notes.

⁽¹²⁾ C. S. Marvel, This Journal, 62, 3496 (1940).

3.0 Preparation of CF2=CH-CO2H

3.1 Dehydrohalogenation of CF₃CH₂CO₂H.—CF₃CH₂-CO₂H (11 g., 0.086 mole) in 150 ml. of H₂O is stirred and NaOH (6.9 g., 0.17 mole) in 200 ml. of H₂O is added intermittently at room temperature over a period of 10 days to keep the solution slightly basic. The neutral solution is made acid with cold 10% H₂SO₄ and continuously extracted with ether. Ether is removed under reduced pressure. Well defined crystals separate; after removing excess ether wen defined crystals separate, after removing excess edge in a stream of dry air analysis gives 25.08% F (calcd. for CF₂=CHCO₂H, 35.2% F, CF₂=CHCO₂H·H₂O 30.2% F, CF₂=CHCO₂H·2H₂O 26.4% F). These crystals gave a positive test for unsaturation with aqueous KMnO₄ and react with Br₂ in CCl₄. Distillation at 5 mm. gives a trace of saturated material with neut. equiv. 127, 129 (calcd. for CF₃CH₂CO₂H 126) and unsaturated material containing 27.05% F with neut. equiv. 146 (calcd. for CF2=CHCO2H-3-

H₂O 144). H₂O 144).

4.0 Preparation of Perfluoroacrylic Acid, C F₂=CFCO₂H.

4.1 Dehydrohalogenation of CHCl₂CF₂CF₂CI.—CHCl₂s
CF₂CF₂CI¹³ (438 g., 2 moles) obtained by addition of CHClto CF₂=CF₂ (75% yield, 90% conversion) is treated with
NaOC₂H₅ (136 g., 2 moles) in C₂H₅OH (900 ml.) while heating at 110° and stirring. The product is removed at 72–73°
as an azeotrope with C₂H₅OH and CHCl₂CF₂CF₂Cl through
a column 3" long packed with glass helices. The azeotrope
and residue are washed with water and insoluble material and residue are washed with water and insoluble material and residue are washed with water and insoluble material dried over MgSO₄. Separation of the olefin from CHCl₂-CF₂CF₂Cl is difficult. Using a 2" column packed with Podbielniak 0.2 mm. nichrome helices, a good fraction is obtained, b.p. 86.2° at 745.2 mm., n^{25} D 1.3950, d^{25} 4, 1.576, M_R 30.2, AR_F 1.12, found 28.71% F (calcd. 28.59% F); total material, b.p. 86-89° (281 g., 70% as CCl₂=CFCF₂Cl on 100% conversion). Less efficient separations gave material with less satisfactory AR_P and analysis e a material The second relations of the separations of the second relations with less satisfactory $AR_{\rm F}$ and analysis, e.g., material b.p. 85.5–85.6° has n^{25} D 1.4010, d^{25} , 1.585, $M_{\rm F}$ 30.6, $AR_{\rm F}$ 1.23, found 24.66% F, 51.88% Cl. Attempts to increase CCl₂=CFCF₂Cl yield by decreasing the rate of take-off resulted in the formation of substantial amounts of substitution products. CHCl₂CF₂CF₂Cl (502 g., 2.3 moles) with NaOC₂H₅ (136 g., 2 moles) in C₂H₅OH (900 ml.) gave CCl₂-NaUC₂H₅ (150 g., 2 moles) in C₂H₅OH (900 ml.) gave CCl₂—CFCF₂Cl (260 g., 1.3 moles, 62.5% yield on 91% conversion); material b.p. 154° (68 g.), n^{28} D 1.4209, d^{28} 4, 1.425, calcd. as C₂H₅OCCl—CFCF₂Cl or CCl₂—CFCF₂OC₂H₅, M_R 37.28, AR_F 1.46; and material, b.p. 55° at 20 mm. (41 g.), which was not investigated. Dehydrohalogenation with alcoholic KOH gave 56% CCl₂—CFCF₂Cl on 55% conversion: manipulation of rates during addition and disconversion: manipulation of rates during addition and disconversion: conversion; manipulation of rates during addition and distillation was difficult. An insignificant amount of olefin was obtained by distillation with alcohol from the H2O wash

solution. solution. 4.2 Dehydrohalogenation of CHCl₂CFClCF₂Cl.—CH-Cl₂CFClCF₂Cl, b.p. 125– 130° , n^{29} b 1.4141 (36 g., 0.15 mole) obtained by addition of CHCl₂ (1194 g., 10 moles) to CF₂=CFCl (232 g., 2 moles) with AlCl₃ (30 g.) (10.2% yield on 73% conversion) is treated with NaOC₂H₅ (10.4 g., 0.15 mole) in C₂H₅OH (65 ml.). The azeotrope, b.p. 69– 72° , is washed and dried: distillation gives CCl₂=CFCF₂Cl, b.p. 84.5– 85.5° (12 g., 0.06 mole, 55% yield on 73% conversion), n^{22} b 1.4046, d^{22} 4 1.590, $M_{\rm R}$ 30.75, $AR_{\rm F}$ 1.29, % C1 found 52.8, calcd. 53.4. This is much better than the 4.1 procedure. procedure.

4.3 Oxidation-Bromination of CF₂ClCF=CCl₂.—Oxygen is bubbled through CF₂ClCF=CCl₂ (100 g., 0.5 mole crude sample) while stirring and adding Br₂ (40 g., 0.25 mole) very slowly. The reaction is protected by a con-

denser followed by an ice and a Dry Ice trap; material collecting in the traps is recycled over a period of 96 hours at which point unreacted Br2 returned to reaction is not dewhich point unreacted Br₂ returned to reaction is not decolorized. The mixture does not react with H₂O; added slowly to NaOH (20 g., 0.5 mole) in 100 ml. of H₂O while warming, reaction is vigorous. Insoluble material remains which, separated, washed, dried over MgSO₄ and distilled is CF₂ClCF₂CHCl₂ and/or CF₂ClCH=CCl₂ (29 g., 0.14 mole). The basic solution is acidified with H₂SO₄ (50 ml.) and continuously extracted with ether for 12 hours. Water is removed by distillation with ether and benzene; distillais removed by distillation with ether and benzene; distillation under reduced pressure gives CF₂CICFCICO₂H (23 g., 0.117 mole), b.p. 65° at 8 mm. or 83–85° at 30 mm., neut. equiv. 196 (calcd. 197), n^{25} p 1.3868, d^{25} 4 1.591, M_R 29.08, AR_F 1.68 and CF₂CICFBrCO₂H (23 g., 0.095 mole), b.p. 75° at 7 mm. or 85–86° at 15 mm. m.n. 23.9° (cooling $AR_{\rm F}$ 1.68 and $CF_2CCFBrCO_2H$ (23 g., 0.095 mole), b.p. 75° at 7 mm. or 85–86° at 15 mm., m.p. 23.9° (cooling curve), n^{25} p 1.948, $M_{\rm R}$ 31.09, $AR_{\rm F}$ 1.39, neut. equiv. 240.5 (calcd. 241.5), found 24.45% F (calcd. 23.65% F). Combined amount of Cl and Br weighed as AgCl and AgBr is 0.85% of the thorsein. trainment of Cl and/or Br in F analysis gives 23.25% F found. Separation is clean using a 2" column with "Podbielniak" nichrome packing: however described. CF2ClCFBrCO2H occurs.

4.4 Dehalogenation of CF₂ClCFBrCO₂H; Preparation of CF₂—CFCO₂H.—CF₂ClCFBrCO₂H (5 g., 0.02 mole) is heated at 40° with Zn (2 g.) in dry ether (300 ml.) for 3 hours while stirring; reflux is rapid for a short period and reaction is evident. The cool mixture is filtered and ether is removed under reduced pressure through a water cooled condenser. Very little residue is obtained from the ether distillate on redistillation at 1 atmosphere. The residue is placed in a 5-ml. flask and CF₂—CFCO₂H (ca. 1.0 g.) sublimed under reduced pressure through an inverted U tube into an ice-water cooled receiver as a colorless crystalline solid, m.p. 35.5-36.5° (sealed tube), neut. equiv. 126.7 (calcd. 126), found 45.16% F (calcd. 45.25% F), qualitative analysis for bromine after Na fusion is negative. The residue is very viscous and polymerizes to a solid on standing. CF2=CFCO2H is extremely hygroscopic and great care must be observed to obtain a high m.p.; all weighings are made by difference in a glass stoppered weighing bottle; neutral equivalents must be made immediately after solution since the F hydrolyzes. CF₂=CFCO₂H polymerizes at room temperature (3 days) coating the vessel with a viscous film and liberating acidic fumes. Identical experiments in which heating at 40° was continued for 2 hours and 45 minutes gives, respectively, 0.7 g. and 0.3 g. and in the latter case is complicated by contamination with CF2ClCF-

latter case is complicated by contamination with CF₂ClCF-BrCO₂H. CF₂ClCFBrCO₂H (3 g.) and Zn (1 g.) in ether (300 ml.) heated 1 hour at 40° gives 0.4 g. of CF₂=CFCO₂H.

4.5 Alternate Attempts.—Dechlorination of CF₂ClCF-ClCO₂H (5 g.) with zinc (1.5 g.) in ether (300 ml.) for eight hours gave a mixture of CF₂=CFCO₂H and CF₂ClCFClCO₂H, the separation of which proved impractical.

Chromic oxidation of CF₂HCF₂CH₂OH, b.p. 105-110° (a gift of E. L. du Pout de Nemours Company) gives a mix-

(a gift of E. I. du Pont de Nemours Company) gives a mixture of CF₂HCF₂CO₂H·0.5H₂O, b.p. 131.5–2.5°, neut. equiv. 152 (calcd. 155) and CF₂HCF₂CO₂H·1H₂O, b.p. 136– 137°, the dehydration of which on P2O5 does not give a clean cut of the dry acid, but rather the anhydride, b.p. 122.5-123.5° at 744 mm., neut. equiv. 275, calcd. 274. The methyl ester CF₂HCF₂CO₂CH₃, b.p. 93-94° at 754 mm., n^{29} D 1.3152, % F 46.6) calcd. 47.5%), and the amide recrystallized from chloroform, m.p. 58.4-59.4° with sublimation. It proved impossible to remove a molecule of hydrogen with a base, CHF₂-CF₂-CO₂R → CF₂=CFCO₂R.

Columbus 10. Ohio

⁽¹³⁾ R. Cramer, D. D. Coffman and G. W. Rigby, This Journal, 71, 979(1949).