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The phase diagram of the quasibinary system Hg3Se3/Ga2Se3
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Abstract

The quasibinary system Hg3Se3/Ga2Se3 was investigated by X-ray phase analysis and by DTA. The system forms extended regions of solid
solutions with zincblende structure. Moreover, it shows at several distinct stoichiometries the formation of superstructures. The phase diagram
of this system can be modeled by a Gibbs energy function for a sub-regular system including ordering terms. The thermodynamic factor for
interdiffusion was calculated from the excess Gibbs energy function.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Quasibinary alloys of II/VI and III/VI compounds are in-
teresting systems for materials as they yield both extended
solid solutions and ordered structures with a high variabil-
ity of properties. To prepare thermodynamically stable sub-
stances the phase diagram of the respective system including
miscibility gaps and ordered regions should be known.

For the calculation of the phase diagram of such a qua-
sibinary system the mean molar Gibbs energy as function
of temperature and composition is needed. For this pur-
pose both the excess Gibbs energy, normally described by
so-called interaction parameters and the Gibbs energies for
the transformation between all contributing phases should
be known.

Alloys of II/VI and III/VI compounds generally crys-
tallize with the zinc-blende lattice, but because of the
stoichiometry of the III/VI compound Ga2V

¯
Se3 the cation

sublattice contains structural vacanciesV
¯

in a concentration
that is always half that of Ga. These so-called structural va-
cancies enable ordering processes of the constituents of the
cation sublattice leading near special stoichiometric compo-
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sitions to the formation of super structures of the zincblende
lattice. If the degree of order of such an ordered structure
would decrease continuously with increasing distance from
its stoichiometric composition until the order has vanished,
the Gibbs energy curve of such an ordered phase should
approach the Gibbs energy curve of the disordered solid
solution at some distance from the stoichiometric compo-
sition. Therefore, from a thermodynamic point of view, the
standard chemical potentials of the components of a qua-
sibinary ordered phase showing an extended composition
region should be the same as those of the components of the
surrounding disordered solid solution. Thus, it is favourable
to treat such a quasibinary system including super struc-
tures, as one single phase with ordered regions. An heuristic
method to fulfill this demand is to describe the ordering
contributions to the Gibbs energy near the characteristic sto-
ichiometric compositions by additive Gaussian terms[1,2].

The description of the whole sub-solidus region by one
single g-function including ordering terms often yields re-
gions where∂2g/∂k2 < 0. Such regions are to be inter-
preted as thermodynamically instable regions, i.e. regions
that lead to the formation of miscibility gaps[3]. Thermo-
dynamically, these miscibility gaps are totally equivalent to
so-called spinodal miscibility gaps and do not have to cor-
respond to possible phase boundaries between phases with
different symmetry.

0925-8388/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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This thermodynamic treatment is well adapted for de-
scribing the thermodynamic factor depending on the excess
Gibbs energy by a continuous functionF(gE). This method
allows to compare the behaviour of the thermodynamic fac-
tor in ordered regions with that in disordered regions.

2. Experiments

2.1. Methods of preparation and measurement

The binary compounds HgSe and Ga2Se3 were synthe-
sized from the elements and purified as described in[4,5].

X-ray measurements were used to determine the struc-
tures and the lattice constants of the equilibrium phases.
For this purpose a set of powder mixtures of different molar
ratios of the above mentioned binary compounds were pre-
pared. All samples were annealed in evacuated sealed quartz
ampoules until thermodynamic equilibrium was attained.
Annealing times depending on the annealing temperature
extended up to 25 weeks for the lowest annealing tempera-
ture of 600 K. To preserve the high temperature equilibrium
compositions and structures the annealed samples were
quenched in ice-water.

Some experiments to determine the boundaries of misci-
bility gaps were done by use of an electron microprobe.

DTA measurements were used to determine the solidus
and liquidus lines as well as order disorder transformations
in the sub-solidus region. HgTe, Zn and In2Te3 were used
as standard substances for the temperature calibration. The
heating and cooling procedures were carried out at veloc-
ities between 15 and 2 K/min. The transition temperature
was taken as the limiting value of such series obtained by
extrapolation to zero velocity.

2.2. X-ray diffraction

2.2.1. General features of the phase diagram
The phase diagram in the sub-solidus region was inves-

tigated within the temperature region 600 K≤T ≤1100 K.
For all samples that were investigated by X-ray measure-
mentsFig. 1 shows the annealing temperatures, the initial
compositions of the samples before annealing and the struc-
tures of the equilibrated samples. The meaning of the sym-
bols are given in the legend of the figure. A superposition
of two symbols at one site indicates that the corresponding
samples are two-phase samples showing the line sets of both
phases. By X-ray diffraction three types of superstructures
at definite stoichiometriesk* could be detected:

• At k ≈ 0.35 andT = 600 K a tetragonal phase (t1) was
detected that corresponds in its X-ray pattern (Fig. 2)
totally to the so-called ‘3/8-structure’ that also was ob-
served in other Hg-chalcogenide containing systems. But
in all these systems the stoichiometry of the totally or-
dered structure always was atk* = 3/8= 0.375. Only this
composition allows a fully ordered superstructure with a

Fig. 1. The phase diagram of the quasibinary system (Hg3(1−k)Ga2kV
¯
)Se3.

(�) cubic (cl), (�) cubic (c3), (+) tetragonal (tl), (×) tetragonal (t2), (�)
monoclinic (mo), (	) DTA signal from heating cycle, (�) DTA signal
from cooling cycle. (�) miscibility limit calculated from lattice constants
(Tables 3 and 4), (�) miscibility limit from microprobe measurements.

relatively small unit cell[6]. Thus, we assume that also
in the present case the exact stoichiometry isk* = 3/8.

• At k* = 0.75 in the whole investigated temperature region
a tetragonal phase (t2) with the chalcopyrite structure,
HgGa2V

¯
Se4, occurs.

Fig. 2. X-ray patterns of samples annealed at 600 K and quenched to room
temperature. The horizontal lines indicate the zero level of X-ray intensity.
Dashed lines: ‘zincblende’ reflections (cl), dotted lines: ‘chalcopyrite’
reflections (t2), solid lines: reflections of the tetragonal ‘3/8’-phase (tl).
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• At k* = 1.0 for T < 1003 K the ordered monoclinic�
modification of Ga2V

¯
Se3 (mo) exists.

The existence of these three ordered regions causes the
occurrence of several miscibility gaps:

• One gap atT >≈ 620 K between the chalcopyrite phase, (k
≈ 0.75), and the HgSe-rich cubic phase (cl) and an second
one between the chalcopyrite phase and the Ga2Se3-rich
cubic phase (c3).

• At 600 K two additional miscibility gaps could be de-
tected between the tetragonal ‘3/8-phase’ (t1) and either
the HgSe-rich cubic phase (c1) or the chalcopyrite phase
(t2).

• On the Ga2Se3-rich side no miscibility gap could be de-
tected between the cubic solid solution (c3) with the struc-
ture of �-Ga2Se3 and the monoclinic�-Ga2Se3 (T <

1000 K).

2.2.2. The so-called 3/8-phase with k* = 0.375
The samples withk = 0.325, 0.350, 0.375 or 0.400

that were annealed at 600 K show X-ray patterns (Fig. 2)
containing a set of reflections that can be indexed ac-
cording to the body-centered tetragonal 3/8-structure
known from other Hg–chalcogenide containing systems
like (Hg3−3kIn2kV

¯
k)Se3 [6], (Hg3−3kIn2kV

¯
k)Te3 [7] and

(Hg3−3kGa2kV
¯
k)Te3 [8]. In all these systems the stoichiom-

etry of the fully ordered structure corresponds exactly
to k* = 0.375. Like these known compounds the com-
pound Hg5Ga2V

¯
Se8 also crystallizes in space group I4m2,

No. 119, the site positions correspond to those given for
Hg5In2V

¯
Te8 in [9] and the lattice parameters of the ho-

mogeneous one-phase sample are:at1 = 828.0 pm andct1

= 1170.9 pm (Table 1). This superstructure is correlated to
the basic zincblende lattice byat1 = √

2azb and ct1 = 2azb.
The tetragonal lattice of Hg5Ga2V

¯
Se8 is undistorted, i.e.

the experimentally determined lattice constants fulfill the
ideal ratioct1/at1 = √

2 (Table 1).
For k = 0.325 the set of reflections of this structure is

superposed by a line set of the cubic solid solution (cl) and
for k = 0.375 and 0.400 by the tetragonal line set of the
chalcopyrite structure. Only fork = 0.350 the samples show

Table 1
Lattice constantsat1 and ct1 calculated from c1–t1 and t1–t2 two-phase
samples that were annealed at 600 K;k0 are the overall compositions of
the two-phase samples

k0

0.325 0.350 0.375 0.400

at1 (pm) 827.9 828.0 826.9 826.2
ct1 (pm) 1170.4 1170.9 1169.1 1168.4
at10 (pm) 585.4 585.5 584.6 584.2
Vcell (nm)3 0.802 0.803 0.799 0.798
kt1 0.350 0.348 0.362 0.368
(ct1/at1)2 1.999 2.000 1.999 2.000

at10 is the pseudo cubic lattice constant,Vcell the cell volume,kt1 are the
boundary mole fractions for t1 as calculated fromat10 with Eq. (2).

Table 2
Lattice constants of stoichiometric HgGa2V

¯
Se4 (t2) for different annealing

temperatures

T (K)

1000 900 800 700 600

a (pm) 571.3 571.0 571.0 571.6 571.7
c (pm) 1083.1 1082.7 1082.2 1080.9 1080.4
c/a 1.896 1.896 1.895 1.891 1.890
vcell (nm)3 0.354 0.353 0.353 0.353 0.353

the pure line set of the 3/8-structure (Fig. 2). This means that
this homogeneous sample is non-stoichiometric, i.e. 1/15
of the structural vacancies of the ideal superstructure are
occupied by additional Hg ions.

From the VegardEq. (2)and from the values of the pseudo
cubic lattice constantat10 (Table 1), the existence region of
this ordered ‘3/8-phase’ at 600 K was determined as 0.35<

kt1 < 0.365.

2.2.3. The chalcopyrite phase at k* = 0.75
The values for the lattice constants, shown inTable 2

for the stoichiometric chalcopyrite phase atk* = 0.75, are
derived from measurements on samples quenched from the
given annealing temperatures to room temperature. They
deviate only little from those reported by Gastaldi et al.
[10], a = 569.3 pm,c = 1082.6 pm. The lattice constants
a and c change only very slightly in dependence on the
annealing temperature. Nevertheless, the detected increase
of c between 600 and 1000 K seems to be outside the limit
of error.

From the fact that strictly stoichiometric samples
quenched from different annealing temperatures yield
somewhat different lattice constants, we conclude that the
temperature dependent degree of order can be quenched.
This is possible, if the activation energy for diffusion in the
cation sublattice is rather high.

Table 2shows that thec/a ratio slightly increases with in-
creasing annealing temperatures, but even at 1000 K it still
deviates rather strongly from the ideal value of 2. According
to Gastaldi et al.[10] a value ofc/a = 2 would be charac-
teristic for only partially ordered structures, as for example
for β-(HgGa2V

¯
)Te4, in which the Hg ions are well ordered,

whereas the trivalent Ga ions and the structural vacancies
are randomly disordered on the remaining sites in the cation
sublattice. Obviously, in the telluride lattice, due to its higher
lattice constants, the activation enthalpy for the Ga-diffusion
is decreased so distinctly that there the ordering of the Ga
ions is thermally disturbed. However, ac/a-value distinctly
lower than 2 indicates a structure, where not only the big Hg
ions, but additionally the smaller Ga ions are ordered. Thus,
the fact that for (HgGa2V

¯
)Se4-even at high temperatures-the

ratio c/a (Table 2) deviates rather much from the ideal value
and decreases only very slightly with decreasing annealing
temperature shows that nearly the full degree of order is
probably already reached at 1000 K.
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Fig. 3. Sections of the X-ray patterns of: (a) cubic�-Ga2V
¯
Se3 (c3, type

a); (b) a modified�-Ga2V
¯
Se3 with split (h+ k+ l) = 2n reflections (c3,

type b); (c) fully orderedβ-Ga2V
¯
Se3 (mo).

2.2.4. The monoclinic β-Ga2V
¯

Se3 at k* = 1
In [11] it was reported that beside the cubic modifi-

cation, called�-Ga2V
¯
Se3 (Fig. 3, type (a)), an ordered

�-modification of Ga2V
¯
Se3 exists[5]. The X-ray pattern of

this phase shows more than 100 sharp reflections (Fig. 3).
Experiments showed that by an annealing of 122 days at

800 K pure�-Ga2V
¯
Se3 can be transformed totally to the or-

dered�-modification. This ordered modification being sta-
ble below 1003 K[12] shows only a very restricted solubility
for HgSe. Adding 2.5 mol% of Hg3Se3 to Ga2V

¯
Se3 yields

after the same annealing procedure at 800 K an�-Ga2V
¯
Se3

pattern together with only the most intensive super struc-
ture reflections of the�-Ga2V

¯
Se3 plus some very weak and

diffuse reflections at positions, where in the�-modification
groups of reflections occur. In samples withk ≤ 0.95 only
the reflections of�-Ga2V

¯
Se3 still occur.

After annealing at 900 or 1000 K the patterns of all
Ga2Se3 rich alloys have changed-compared to the pattern
of �-Ga2V

¯
Se3-in so far as those reflections fulfilling the

condition (h + k + l) = 2n have split into doublets (Fig. 3,
type (b)). Moreover, all superstructure reflections of the
�-Ga2V

¯
Se3 have vanished totally. However, a comparison

of such X-ray diagrams with that of monoclinic�-Ga2V
¯
Se3

shows interesting similarities: for example the pair arising
near the cubic 224 position corresponds to the two groups
(391̄, 19̄3, 531, 135) and (46̄4, 60̄2, 20̄6) of the monoclinic
�-Ga2V

¯
Se3. This indicates that there is still an ordering

tendency in the solid solutions, but the degree of order must
have strongly decreased.

At T = 600 and 700 K the X-ray patterns of samples with
0.75 < k ≤ 0.95 consist of the superposition of the line
sets of the�-Ga2V

¯
Se3 and of the chalcopyrite structure. For

k ≥ 0.95, where the predominant part of these two-phase
samples consists of nearly pure Ga2V

¯
Se3, some of the most

intensive superstructure reflections of the monoclinic struc-
ture are additionally to be seen. Thus, at temperatures below
800 K the miscibility gap extends between nearly stoichio-
metric phases of tetragonal HgGa2V

¯
Se4 (t2) and monoclinic

�-Ga2V
¯
Se3 (mo). At higher temperatures the two-phase

samples consist of the chalcopyrite phase (t2) and the cu-
bic �-Ga2V

¯
Se3 (c3). Obviously, the occupation of only a

few % of the structural vacancies by Hg atoms disturbs dis-
tinctly the ordering of the Ga atoms in the metal sublattice.
But experimentally, a phase boundary between the ordered
monoclinic�-Ga2V

¯
Se3 and a solid solution with the cubic

�-Ga2V
¯
Se3 structure could never be detected. As already

mentioned above, we assume that the observed X-ray pat-
terns of the so-called�-Ga2V

¯
Se3 correspond to a partially

ordered structure of Ga2V
¯
Se3 and the extension of locally

ordered regions becomes smaller and smaller with increasing
Hg content in such a way that the intensity of the superstruc-
ture reflections vanish without any perceptible discontinuity.

2.2.5. Lattice constants of the solid solutions
As in nearly all quasibinary II/VI–III/VI-systems the pure

II/VI-component HgSe crystallizes in the zincblende lat-
tice and the pure III/VI-component Ga2V

¯
Se3 as well as the

solid solutions of the two components in the so-called de-
fect zincblende lattice, where the constituents Hg, Ga, and
V
¯

in the cation sublattice are more or less randomly dis-
tributed. The cubic lattice constants measured on homoge-
neous Ga2Se3-rich samples can be described in a rather
good approximation by a function depending linearly on
the Ga2Se3 mole fraction k. Witha(HgSe)= 608.6 pm and
a(Ga2Se3) = 545.1 pm this ‘Vegard’ function reads (Fig. 4):

a(k)/pm = 608.6 − 63.5k, valid fork > 0.6 (1)

The homogeneous HgSe-rich samples, equilibrated at
1000 K, extend from the pure HgSe(k = 0) up to a mole
fraction of at leastk = 0.5 (Fig. 4). But their lattice constants
belong to a somewhat steeper line described byEq. (2)

a(k)/pm = 608.6 − 66.0k, valid fork < 0.6 (2)

As the ordered structures Hg5Ga2V
¯
Se8 (t1) HgGa2V

¯
Se4

(t2) are superstructures of the zincblende lattice, the linear
functions Eqs. (l) and (2) can be applied also on these super-
structures if so-called pseudo cubic lattice constantsa�0 for
the tetragonal superstructuresΦ = tl or t2 are introduced.
In the case of the undistorted 3/8-structure this constant is

Fig. 4. Linear relationshipsa(k) for cubic and pseudo cubic lattice con-
stants: (�) cl, (�) tl, (�) c3, (�) t2 (Eqs. (l) and (2)).
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defined asat10 = (Vcell/4)1/3 and in the case of the distorted
chalcopyrite structure withc/a < 2, asat20 = (Vcell/2)1/3.

One obtains for the pseudo cubic lattice constants from
the cell volumeV t2

cell = 0.803 nm3 of the homogeneous
‘3/8-phase’ (Table 1) a value ofat10 = 585.5 pm, and from
the cell volumeV t2

cell = 0.353 nm3 of the chalcopyrite phase
(Table 2) a value ofat20 = 560.9 pm. With these lattice
constants one obtains fromEq. (2) a mole fraction ofkt1

= 0.361 for the ‘3/8-phase’ in rather good accordance with
the results from X-ray diffraction, and fromEq. (1)a mole
fraction ofkt2 = 0.751. These results show that these equa-
tions cannot only be used to describe the lattice constants
of the solid solutions, but also those of the adjacent ordered
phases (Fig. 4).

2.2.6. Limits of miscibility
The lattice constantsa for the HgSe-rich cubic phase (cl)

in equilibrium with the chalcopyrite phase (t2) can be de-
termined from the cubic line set of the X-ray patterns of the
two-phase samples.Eq. (2)can then be used to calculate the
mole fractionskc1 for the cubic boundary of the miscibility
gap (Table 3).

For the lattice parameters of the chalcopyrite phase (t2) in
equilibrium with the HgSe-rich cubic phase (cl) one obtains
from the tetragonal line sets of the two-phase samples nearly
constant values with only statistical scattering. The mean
values taken from all temperatures and compositions are〈a〉
= 571.7 pm and〈c〉 = 1081.3 pm. Considering the error
limits of measurement these values are nearly the same as
those for the strict stoichiometric compound HgGa2V

¯
Se4:

〈a〉 = 571.2 pm and〈c〉 = 1081.8 pm (Table 2). Thus there is
no measurable solubility for HgSe in the chalcopyrite phase
HgGa2V

¯
Se4.

The limit kt2 of the existence region of the chalcopyrite
phase (t2) in equilibrium with the solid solution (c3), i.e.
the solubility limit of Ga2V

¯
Se3 in HgGa2V

¯
Se4 (Table 4),

was determined by usingEq. (1) and the values for the
pseudo cubic lattice constantat20 derived from the two-phase
samples.

The compositionkc3 of the Ga2V
¯
Se3-rich boundary of

the miscibility gap was also determined by usingEq. (1),
but in this case the lattice constantac3 (Table 4) as de-

Table 3
Miscibility limit of the HgSe-rich cubic phase (cl)

T (K) kc1

1000 0.494
900 0.440
800 0.377
700 0.350
675 0.341
650 0.333
625 0.324
600 0.300

Table 4
Lattice constants calculated from t2–c3 two-phase samples and mole
fractions kt2 for the tetragonal andkc3 for the cubic boundaries of the
miscibility gap between chalcopyrite (t2) and Ga2Se3-rich solid solution
(c3)

T (K)

1100 1000 900 800 700 600

at2 (pm) 567.1 566.4 568.0 569.9 571.2 572.0
ct2 (pm) 1084.1 1084.8 1083.6 1081.9 1080.4 1079.6
at20 (pm) 558.8 558.3 559.3 560.1 560.4 560.9
kt2 0.78 0.79 0.78 0.76 0.76 0.75
ac3 (pm) 553.6 551.9 551.9 550.2 546.6 545.6
kc3 0.87 0.89 0.89 0.92 0.98 0.99

rived from the cubic line set of the two phase samples-was
used.

2.3. DTA-measurements

2.3.1. Order–disorder transition
Samples within the composition range 0.35≤ k ≤ 0.40

show a small endothermic effect near 630 K in the heat-
ing curves and a corresponding effect in the cooling curves.
The effect is sharpest atk = 0.375 and can no more be de-
tected fork = 0.325. This effect is due to an order–disorder
transformation near the transition temperature between a
tetragonally ordered 3/8-phase and a cubic disordered solid
solution with zincblende structure. This effect can be ob-
served, because at these low temperatures the peritectoidic
decomposition-demanding diffusion processes of the big Hg
ions-is not fast enough compared to the velocity of the tem-
perature change during a DTA cycle.

2.3.2. Liquidus–solidus
Fig. l shows the compositions of the samples and the

temperatures of the DTA peaks. The solidus and liq-
uidus curves yield a common minimum atkaz = 0.21,
Taz = 1064 K. Thus, this system behaves azeotropic. The
compound HgGa2V

¯
Se4 (t2) does not melt congruently,

but forms a peritectic at T≈ 1150 K. A second peritectic
point, where the melt is in equilibrium with a HgSe-rich
cubic solid solution and a HgSe-saturated HgGa2V

¯
Se4

(t2), must occur between these two temperatures 1064 and
1150 K.

3. Calculation of the phase diagram

3.1. General procedures

The mean molar Gibbs energy of a solid solution can be
split into three terms: a standard, a mixing and an excess
term.

g = g0 + gM +
(
gE,n +

∑
gsk∗

)
(3)
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To calculate the normal excess termgE,n we used a
model with temperature dependent interaction parameters,
gE,n = hE − TsE, where the interaction parameters depend
linearly on the mole fractionk:

hE = k(1 − k)(α + kβ), sE = k(1 − k)(σ + kτ) (4)

To consider ordering phenomena in the system (Hg3−3k
Ga2kV

¯
k)Se3 containing structural vacanciesV

¯
, we introduce

Gaussian ordering terms of the following type[1]

gsk∗(T, k) = −�TrG
0
k∗ exp

[
(k − k∗)2

2σ2
k∗

]
(5)

with

�TrG
0
k∗ = �TrH

0
k∗ − T �TrS

0
k∗ for T < TTr,k∗ and

�TrG
0
k∗ = 0 forT ≥ TTr,k∗.

�TrG
0
k∗ describes the difference between the Gibbs energy

of the totally disordered state and the ordered state of the
superstructure with the exact stoichiometryk*. �TrH

0
k∗, and

�TrS
0
k∗ are the molar enthalpy and entropy for the transition

from the fully ordered state to the totally disordered state
of the pure stoichiometric compound. The exponential ex-
pression with its characteristic termσk determines, how fast
the ordering contribution decreases with increasing distance
k–k* from the exact stoichiometric composition.

The mean molar Gibbs energy according toEq. (3)yields
for the whole sub-solidus region a single continuous function
showing relative or absolute minima near the mole fractions
k* of the super structures (Fig. 5).

Miscibility gaps occur in all regions in which the
g-function shows a negative curvature. To determine the
boundaries of a miscibility gap, one has to calculate the
compositionsk′ andk′′ for which on both sides of the gap
the chemical potentials for each component are equal, i.e.
µ′

i = µ′′
i with i ∈ {Hg3Se3, Ga2V

¯
Se3}

µ∗�
Hg3Se3(k) = g∗�(k) −

(
dg∗�

dk

)
k (6)

Fig. 5. The mean molar Gibbs energyg as function of the Ga2Se3 mole
fraction k for T = 590 K. The inner thin line does not consider the
influence of the ordering parameters

∑
gsk∗ of Eq. (3).

µ∗�
Ga2V

¯
Se3

(k) = g∗�(k) +
(

dg∗�
dk

)
1 − k (7)

Such miscibility gaps behave in the same way as spinodal
miscibility gaps. The index (*) indicates that the so-called
normalizedg-functions[13] were used. For the liquid phase
this normalized function reads[2]:

g∗
liq

=
∑
i

xi

[
RT lnxi + �FH

0 (i)T

(
1

T
− 1

TF(i)

)]
+ g

E,n
liq

(8)

Equilibria between the liquid and the solid phase are char-
acterized by the points of contact of the common tangents
on g∗

liq
andg∗

sol
.

3.2. The ordering parameters

Although we observed the homogeneous ‘3/8-phase’ of
the tetragonally ordered ‘tl’-structure atk = 0.35, we as-
sume that the ideal stoichiometric composition for the fully
ordered structure isk* = 0.375. We do so, because the
X-ray pattern of the observed tetragonal structure corre-
sponds very well with the patterns of the ‘3/8-structures’
of other II–VI/III–VI-systems and because the fully or-
dered form of this type of structure, composed of only two
different clusters ((HgHgHgGa)Se and (HgHgGaV

¯
)Se),

demands a composition corresponding tok = 0.375. As to
the ordering parameters of the super structures (Table 5)
we started the calculations by estimating values for the
transition temperature and the transition entropy of the
order–disorder processes. The transition enthalpies for dis-
ordering are then obtained by the well known equilibrium
relation�TrH0=TTr �TrS0.

3.3. Transition temperatures

DTA experiments yield for the ordered structure (t1) near
k* = 0.375 a transition temperature ofT ≈ 630 K.

As the chalcopyrite phase (k* = 0.75) melts before disor-
dering, a starting value for the determination of its transition
temperature was estimated by extrapolation of the border
lines of the miscibility gap.

The transition temperature ofT = 1003 K for the mono-
clinic phase atk* = 1 was taken from the literature[12].

Table 5
Ordering parameters for (Hg3(1−k)V

¯
kGa2k)Se3

Symmetry k∗ �TrH
0
k∗

J/mol
�TrS

0
k∗

J/(mol K)
TTr,k∗ (K) σk

tl 0.375 2460 3.90 631 0.03
t2 0.75 5000 3.94 1269 0.03
moa 1.0 600 0.60 1003 0.012

a Reference[12].
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3.4. Transition entropies

As derived in[1] the ideal molar mixing entropy for solid
solutions of type (Hg3−3kGa2kVk) Se3 is given by:

sidM(k) = −R[k ln k + (1 − k)ln(1 − k)] (9)

If a totally ordered superstructure transformed into an ide-
ally mixed solid solution its order–disorder transformation
entropy could be identified with the mixing entropy accord-
ing to Eq. (9) (sidM(0.375) = 4.675 J/(mol K),sidM(0.75) =
5.500 J/(mol K)). But, from several II–VI/III–VI systems
we know, that a solid solution in equilibrium with its super-
structure at the transition temperature is partially ordered.
The reason is that also in the solid solutions the clus-
ters forming the ordered structures- here (HgHgHgGa)Se
and (HgHgGaV)Se at k = 3/8, and (HgGaGaV)Se at k
= 3/4-occur with higher than statistical probabilities. Thus,
the real disordering entropies must be lower than the ideal
limiting values according toEq. (9). Moreover, we know
from the c/a-ratios (Table 2) that in contrast to the telluride
HgGa2VTe4 the corresponding selenide HgGa2V

¯
Se4 is

nearly totally ordered. Thus, it is to be expected that the
transition entropy for the chalcopyrite phase in the selenide
lattice is distinctly higher than in the telluride lattice.

As starting values for the determination of the disordering
entropies atk* = 0.375 andk* = 0.75 we used the values
that were determined for the equivalently ordered phases
in the telluride system (Hg3−3kGa2kVk)Te3 [14]. Compared
to the telluride system, the finally adjusted values for the
selenide system (Table 5) are for both tetragonal structures,
tl and t2, nearer to the ideal limiting values.

The disordering entropy of pure Ga2V
¯
Se3 (k = 1) was

determined in[11] as�TrS
0 = 0.6 J/(mol K). This rather

small value suggests a small difference in the degree of order
between the solid solution and the ordered structure.

Obviously, the Ga2V
¯
Se4-rich solid solution is far from be-

ing randomly disordered, i.e. the probabilities of the clusters
(GaGaVV)Se and (GaGaGaV

¯
)Se forming the ordered struc-

ture must be distinctly higher, and those of the remaining
clusters (GaGaGaGa)Se, (GaVVV)Se and (VVVV)Se dis-
tinctly lower then in a purely statistical cluster distribution.
Such a similarity of solid solution and ordered structure also
explains, why the ordering enthalpy is so small, and why
no DTA signal could be measured near the order–disorder
transition temperature ofT = 1003 K. As above mentioned,
the totally ordered structure can only be attained after long
annealing processes and it gets destroyed by alloying very
small amounts of HgSe.

3.5. The interaction parameters and the fusion data

The fusion data (Table 6) are known from the literature.
Initial values for the interaction parameters are determined
by adjusting the calculated liquidus and solidus lines to the
experimental DTA data. Then, the interaction parameters
(Table 7) and the ordering parameters (Table 5) were deter-

Table 6
Fusion data

Substancei �FH0(i) (kJ/mol) TF(i) (K) �FS0(i) (J/(mol K))

Hg3Se3 93.0a 1072b 86.8
Ga2Se3 20.0c 1283d 15.6

a Reference[15].
b Reference[16].
c Reference[11].
d Reference[12].

Table 7
Interaction parameters for liquid and solid phases in the system
Hg3Se3/Ga2Se3

PhaseΦ α� (J/mol) σ� (J/(mol K)) β� (J/mol) τ� (J/(mol K))

Liquid −12000 0.0 8000 0.0
Solid 1060 3.5 360 1.2

mined by fitting the calculated boundaries of the miscibility
gaps to the experimental data.

The lines drawn inFig. 1 represent the boundaries of
the stable regions in the phase diagram calculated from the
Gibbs energy function by use of the adjusted parameters as
given in Tables 5–7. The calculated characteristic points of
the phase diagram are listed inTable 8.

4. The thermodynamic factor

Using the total excess Gibbs energy,gE = gE,n + ∑
gs
k∗

according toEq. (3), the thermodynamic factorF for sys-
tems with ordering tendencies can be calculated by the usual
expression:

F(k, T) = 1 + k(1 − k)

RT

(
∂2gE

∂x2

)
(10)

This procedure has the advantage, that the thermodynamic
factor for the quasibinary system becomes a single function
including all regions of the phase diagram (Fig. 6).

Regions, whereF < 0, are instable, all others are stable
with respect to diffusion[17], but these stable regions can
have different characteristics: if 0≤ F ≤ 1 is fulfilled, they
belong to disordered solid solutions, but they generally ex-
tend into miscibility gaps forming thermally metastable re-
gions. Regions withF > 1, however, belong to stable ordered
phases.

Table 8
Calculated characteristic points

Equilibrium (A–B–C) T (K) k (A) k (B) k (C)

(cl–tl–t2) 610 0.29 0.35 0.75
(t2–c3–mo) 772 0.76 0.97 0.99
(cl–liq–c2) 1064 0.21 0.21 0.21
(liq–c2–t2) 1080 0.44 0.56 0.74
(liq–t2–c3) 1147 0.70 0.77 0.87
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Fig. 6. The thermodynamic factor as function of the Ga2Se3 mole fraction
k for T = 600, 800 and 1000 K; the higher the temperature, the lower the
extrema of the thermodynamic factor caused by ordering.

In ordered regions on the one side diffusion would be en-
hanced by the thermodynamic factor, but on the other side
the diffusion should be decreased because the structural va-
cancies in an ordered region do behave no more as defects
but as interstitial sites of the super structure. Thus, for or-
dered regions of II–VI/III–VI systems one cannot predict,
whether the diffusion coefficient will increase or decrease
related to the surrounding disordered regions.
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