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Communications to the Editor 

The Synthesis of Elaiomycin, a Naturally Occurring 
Azoxyalkene 

Sir: 
Two of the five naturally occurring azoxy compounds, 

macrozaminl and cycasin,2 are glycosides of "methylazoxy- 
methanol", which has been prepared (as the acetate) from 
a~oxymethane .~  However, syntheses of the mutually related, 
more complicated, proximal4 a,P-(cis)-unsaturated azoxy- 
alkenes, elaiomycin (1)5 and LL-BH872a (2),6 require a 
general synthesis of azoxyalkanes and specific methods for the 
configurationally controlled introduction of unsaturation.' 
Despite a recent quickening of interest in a z ~ x y a l k a n e s , ~ . ~  
routes to 1 or 2 have remained obscure, although the biological 
significance of 1Io (an antibiotic and a carcinogen) and 26a (an 
antifungal agent) makes syntheses highly desirable.' I 
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We are therefore pleased to report the total synthesis of 1 
from D-threonine by a three-phase synthetic approach: (A) 
construction of the distal moiety of 1, including the azoxy 
function; (B) elaboration of a proximal trans-octenyl group; 
(C) isomerization to the cis-octenyl group, This approach was 
based on key synthetic methods discovered in our laborato- 
ry.'2-'6 A detailed description follows. 

4 3 

(A) The distal group.12-14 As in the synthesis of dihydroe- 
laiomycin, 3,14 D-threonine was converted to pivotal urethane 
4 by extension of Stevens' method for synthesis of the corre- 
sponding amine. The hydrochloride salt of D-threonine ethyl 
ester was reacted with ethyl benzimidate to yield oxazoline 5 
(52%). Reduction of 5 (LiAlH4, 94%) gave 6,17 which was 
converted (92%) to methyl ether 7 using NaH/CH3I in 
THF.I8 Ether 7 was identical with a sample prepared from 
6-OTs and NaOCH3/CH30H,5d.14 but the yield was higher 
in the N a H  procedure, and oxazole 8 (a by-product of the 
methoxide procedure) was not formed. Hydrolysis of 7 (re- 
fluxing 6 N HCl, 5 h, then 25 "C, 12 h) gave benzoic acid 
(96%) and the aqueous amine-hydrochloride, which was 
neutralized (Na2C03) and converted in situ (ClCOOC2H5, 
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93%) to 4, identical with a previously prepared sample.l4-I9 
Treatment of 4 with t-C4Hg(CH3)2SiCl (imidazole, DMF, 25 
"C, 17 h)20 quantitatively afforded protected urethane 4-OG 
(see Chart I), Its N M R  spectrum resembled that of 4,14 but 
showed 6 0.87 (s, 9 H,  t-C4H9) and 0.03 (s, 6 H, Si(CH3)2). 
Quantitative conversion of 4-OG to the N-nitrosourethane 
(AaCc14 OCH2CH3 = 0.42)21 with ethereal N204 was followed 
by cleavage to diazotate 9 using KOt-C4H9 in ether.'4.21-22 
Treatment of an HMPA solution of 9 with excess CHJ  (25 
OC, 12 h, 29% based on nitrosourethane) afforded azoxyalkane 
10, which was purified by repetitive TLC23 (3: 1 hexane/ether): 
NMR 6 4.03 (s, 3 H ,  CH3N(0)=N);24,25 IR (neat) 1500 
cm-l (azoxy);12 exact mass (M+ - 15), calcd 261.1633, found 
261.1648. 

(B) Elaboration of the tram-octenyl moiety.I5 Azoxyalkane 
10 was converted to its proximal a-carbanion ((i-Pr)2NLi, 
THF, 0-5 "C, 30 min),I5 which was quenched with excess 
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n-heptaldehyde (0-5 "C, 1 h) quantitatively affording crude 
azoxy alcohol 11 (Z = H): NMR,  6 4.06 (m, 3 H,  
CHN=N(0)CH2);12,24 IR (neat), 3450 (OH), 1490 (azoxy) 
cm-'. Without purification, this was converted (CH3S02C1, 
pyridine, 25 "C, 23 h, 94%) to mesylate 11 (Z = S02CH3); 
N M R  6 2.86 (s, 3 H,  Cff3S03).24 The crude mesylate, under 
reflux in toluene containing excess triethylamine (20 h), gave 
protected trans-elaiomycin, 12, which was purified by repet- 
itive TLC (9:l hexane/ether). The yield of 12 was 13% from 
11 (Z = H): NMR 6 6.90 (m, 2 H,  vinyl), 4.23 (m, 2 H, distal 
a - H  + SiOCH), 3.58 (m, 2 H,  CH20CH3), 3.28 (s, 3 H, 
OCH3), 2.25 (m, 2 H,  allyl), (1.40 (m, C ~ H I  I )  + 1.1 1 (d, J 
= 6 Hz, CHCH3) + 0.91 (s, t-C4H9), total -23 H),  0.08 (s, 
6 H,  Si(CH3)l); IR (neat) 1640 (C=C), 1460 (azoxy), 950 
(trans-disubstituted C=C) cm-'. The spectral properties of 
12 coincide with corresponding data for 3,14 trans- 
CH3CH=CHN( O)=N-2-CsH , , I s  and trans-n- C6H I 3- 

(C) Isomerization.I6 Bromine (cc14,25 OC, 30 min, 100%) 
added to 12 yielding the corresponding erythro-dibromide, 
whence deprotectionZ0 (CH3COOH:HzO:THF, 3: 1 : 1, 25 "C, 
18 h, 95%) gave erthyro-dibromoelaiomycin, 13, which was 
purified by repetitive TLC (3: 1 hexane/ether): NMR,  6 5.96 
(d, J = 11 Hz, 1 H,  proximal a-H),  4.65 (m, 1 H,  proximal 
0-H),  4.11 (m, 2 H,  distal a - H  + HOCH),  3.58 (m, 2 H,  
C H I O C H ~ ) ,  3.28 (s, 3 H, OCH,), 2.21 (br s, 1 H, O H ) ,  
1.71-0.65 (m, residual alkyl); IR (neat), 3450 (OH), 1495 
(azoxy) cm-i.27 For comparison, the a- and @-proximal pro- 
tons of erythro-CH3CHBrCHBrN(O)=N-2-CsH I 7 appear 
at  6 5.85 (d, J = 11 Hz) and 4.73 (m); its distal a-H appears 
at 6 4.00 (m).I6 

Anti elimination of HBr from 13 (DBU, 25 OC, 30 min, 
75%)28 gave crude a-bromoelaiomycin, 14: N M R  (CC14, 
Me+%), 6 5.92 (t, J = 8 Hz, 1 H, IR (neat), 3400 
(OH), 1620 (C=C), 1460 (azoxy) cm-I. For comparison, the 
vinyl proton of E-CH~CH=CB~N(O)=N-~-C~HI  7 appears 
at 6 5.96 (4, J = 7.5 Hz).I6 Crude 14 was debrominated with 
powdered zinc (Mallinkrodt AR grade ether,29 containing 4 
vol %of 30 wt % aqueous CH3COOH, 25 OC, 24 h, 52%); re- 
petitive TLC (3: 1 hexane/ether) afforded elaiomycin, 1, as 
well as unreacted 14.30 

Synthetic 1 contained a trace of carbonyl impurity (1740 
cm-I), but its IR spectrum was otherwise identical with the 
published spectrumsa of natural 1, including bands at  3450 
(OH), 1650 (C=C), 1455 (azoxy), and 785 (cis disubstituted 
C=C ?) cm-l. The UV spectrum gave XmaxCH30H 235, t 1.0 
X IO4 (lit.5"b 237.5, 1.1 X lo4). The N M R  spectrum (CC14, 
Me&) was persuasive: 6 6.83 ("d", J - 9 Hz, 1 H,  proximal 
CY-H),~'  5 . 7 0 ( q , J - 9 H z ,  1 H,proximalP-H),4,17(m,2H, 
distal a -H  + CHOH),  3.58 (m, 2 H,  CH20CH3), 3.33 (s, 3 
H,  OCH3), 2.70 (m, 2 H, allyl), 2.13 (m, 1 H, OH) ,  1.78-0.60 
(m, residual alkyl). Both natural 1 and 2 exhibit vinyl doublets, 
J = 9 Hz, at  6 6.83,6a and 2 exhibits a quartet at  6 5.83, J = 9 
H z . ~ ~  In  C~~-CH~CH=CHN(O)=N-~-C~HI~, the corre- 
sponding vinyl signals appear at  6 6.70 ("d", J = 9 Hz) and 
5.73 (quintet, J = 8 Hz).I6 Other NMR signals of synthetic 
1 are in accord with structural e ~ p e c t a t i o n . ~ ~ ~ ~ ~ ~ ~ ~  

Reduction of synthetic 1 (5% Rh/A1203, 1 atm of H2, 
CH3OH, 1 h) gave dihydroelaiomycin, identical in N M R  
spectrumi4 and TLC behavior with an authentic sample pro- 
duced via alkylation of 9 (G = tetrahydropyranyl) with n- 

Synthetic 1 had [ a ] 2 4 ~  +24.0° (c 2.8, ethanol), 62.5% of 
the rotation of natural l.5a It is possible that the apparent loss 
of optical activity is due to the presence of a trace of highly 
levorotatory impurity in the synthetic l.31 Alternatively, a 
dextrorotatory impurity may have been present in natural 
1.5a.33 

The overall yield for the 18-step conversion of D-threonine 

CH=CHN(0)=N-2-C4H9.26s27 

CgH 171. l 4  

to 1 was only 0.55%, but we have not optimized the key low- 
yield steps 9 .-+ 10 and 11-OMs .-+ 12, so that an enhanced 
yield should be attainable. This initial synthesis of elaiomycin 
employs strategies which are applicable to 2 and synthetic 
analogues. Moreover, the crucial sequences substantially 
broaden the scope of azoxyalkane chemistry.34 
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Berninamycin. 3. Total Structure of Berninamycin A'J 

Sir: 
In earlier reports1-) from this laboratory we have described 

the results of initial structural studies on the novel, sulfur- 
containing antibiotic berninamycin A, which is a potent in- 
hibitor of bacterial protein synthesis. Degradation products 
obtained from acidic hydrolysis, methanolysis, and acetolysis 
of berninamycin A allowed the assignment of the structural 
subunits shown in the top row of Figure I,* which account for 
the total composition of the antibiotic. In the present com- 
munication, we assign the total structure of berninamycin A 
as 1, based upon new compounds obtained by trifluoroaceto- 
lysis of the intact antibiotic and its sodium borohydride-re- 
duced and catalytically hydrogenated derivatives. 

Treatment of berninamycin A with trifluoroacetic acid a t  
room temperature for 18 h afforded three major compounds 
(Figure 2). The least polar compound was identified as the 
previously reported 2.2 A second compound (mp 109- 1 10 OC; 
c 15H2oN406)~~  was assigned structure 3. As previously dis- 
cussed,2 the residues (Deala, Thr, Hyval, Ox-A, Ox-B, Ber- 
ninamycyl) which comprise berninamycin A have unique 'H 
NMR resonances which allow their identification in degra- 

I 

dation products formed from the intact antibiotic. The IH 
NMR spectrum of 3 contains the resonances assignable* to the 
Hyval (1.40 ppm, s, 3 H;  1.50, s, 3 H; 5.49, d, 7 Hz, 1 H)  and 
Ox-A (2.63, s, 3 H;  2.04, s, 3 H)  residues and to a pyruvyl unit 
(2.42 ppm, s, 3 H). 

The pyruvyl residue (which results from cleavage of a Deala 
residue)2 can only occupy the N-terminal position, and a 
structure including the sequence Ox-A-Hyval is eliminated 
by subunit a of Figure 1. Thus, the expected structure for the 
second trifluoroacetolysis product would be pyruvyl- 
Hyval-Ox-A-NH:! (4), a structural isomer of 3. The 1,3- 
tetrahydrooxazine ring of 3 results from intramolecular ad- 
dition of the hydroxyl group of Hyval to the enamine of Ox-A 
in 4 during trifluoroacetolysis. Combination of the sequence 
of 4 with subunit a allows the assignment of c (Figure 1) as a 
sequence in the intact antibiotic. 

The most polar compound from trifluoroacetolysis of 1 is 
assigned structure 5 (mp 153 OC dec; C27H26N&S).4" The 
' H  NMR spectrum of 5 has resonances assignable2 to Thr, 
Ox-B, Deala, and Berninamycyl (Figure 1 ) .  These residues, 

H CO-NH-C-CO- I1 
- ~ ~ - C - ~ ~ - ~ ~ - C ~ - ~ ~ - ~ ~ - ~ ~ ~ ~ ~ ,  CHt 

II 
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Figure 1. Subunit sequences found in berninamycin A. Subunits shown in  the top line were established earlier.' 
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