J. Chem. Soc. (C), 1971

Synthesis and Proton Magnetic Resonance Spectra of Substituted Biphenyls

By P. W. Hickmott * and A. T. Hudson, University of Salford, Salford M5 4WT, Lancs.

A series of new acylamino-, amino-, chloro-, and nitro-derivatives of 3,3'-dichlorobiphenyl have been prepared from 3,3'-dichlorobenzidine, and their structures have been confirmed by ¹H n.m.r. spectroscopy. The electronic and steric effects of a nitro-group *ortho* to the internuclear linkage are discussed.

NITRATION of 4,4'-diaminobiphenyl (benzidine) gives the 2-nitro-derivative,¹ which can readily be diacylated with acryloyl chloride at low temperatures to give 4,4'-bis(acryloylamino)-2-nitrobiphenyl.² Reduction gives the 2-amino-derivative, which has been used as a diazo component in the preparation of fibre-reactive azo dyes for wool.² In an attempt to extend the range of dyes obtainable by this method, we have investigated the nitration and subsequent acylation of 3,3'-dichlorobenzidine.[†] A mononitro-derivative was obtained which, under the mild conditions used to convert 2nitrobenzidine into the NN'-diacyl derivative, gave only a monoacetyl derivative. This could have been compound (Ia) or compound (Ib) depending on whether

or not the 4-amino-group was deactivated by the inductive effect of the 6-nitro-substituent to a greater extent than the 4'-amino-group was deactivated by the mesomeric effect of the 6-nitro-substituent transmitted through conjugative interaction between the two benzene rings. Structure (II; X = NHAc), in which the 4-amino group is deactivated by the steric and electronic effects of the 5-nitro-substituent, was also a

possibility. The following results show conclusively that structure (Ia) is the correct one.

The ¹H n.m.r. spectrum of the mononitro-derivative of 3,3'-dichlorobenzidine (Table, no. 2) shows the signals for aromatic protons (H_D and H_E) of the nitrated ring (A) as singlets, as required for the 6-nitro-derivative (I; $X = Y = NH_2$, $Z = NO_2$), rather than as metasplit doublets as required for the 5-nitro-derivative (II; $X = NH_2$). The fact that protons H_D and H_E have similar chemical shifts ($\tau 2.70$ and 2.72) is also only explicable in terms of structure (I), the shielding and deshielding effects, respectively, of the amino- and nitro-groups (both ortho or both meta) thus cancelling This assignment has been confirmed by conversion out. of the nitrodichlorobenzidine into the tetrachloronitrobiphenyl (I; X = Y = Cl, $Z = NO_2$), in the spectrum of which these protons now give singlets at $\tau 2.18$ and 1.74 (Table, no. 3), and into the dichloronitrobiphenyl (I; X = Y = H, $Z = NO_2$), in the spectrum of which only the proton ortho to the nitro-group is clearly resolved, as an ortho-split doublet (Table, no. 4). Structure (II) is therefore ruled out.

The ¹H n.m.r. spectrum of the monoacetyl derivative of 3,3'-dichloro-6-nitrobenzidine (Table, no. 7) again shows that the aromatic protons of the nitrated ring (A) have similar chemical shifts (τ 2·48 and 2·52) and indicates that the amino- and nitro-substituents are in the same ring, as in structure (Ia). This has been confirmed by conversion into the acetylaminotrichlorobiphenyl (Sandmeyer reaction). The ¹H n.m.r. spectrum (Table, no. 8) of this substance shows considerable differences in the chemical shifts of H_D and H_E, the signals of which are also at considerably lower field.

[†] For convenience, all derivatives of this compound are numbered in the same way; *i.e.* compound (I; $X = Y = NH_{2}$, $Z = NO_{2}$) we refer to as a 6- rather than a 2-nitro-derivative, although the latter is more correct.

¹ A. W. von Hofmann, Ber., 1890, 23, 794.

² F. Bowman and P. W. Hickmott, B.P. 984,802.

The chemical shifts of the aromatic protons of ring B are virtually the same as those of the corresponding protons in the parent amino-compound (Table, no. 7). This proves that the monoacetyl derivative has structure (Ia).

Although under mild conditions only the monoacetyl derivative of 3,3'-dichloro-6-nitrobenzidine was obtained, more forcing conditions gave the diacetyl derivative. This was identical with the product derived by nitration of NN'-diacetyl-3,3'-dichlorobenzidine. This fact supports the suggestion ³ that the van der

ortho'-substituents must be relieved by an increase in the dihedral angle between the rings, or by twisting the nitro-group out of the plane of ring A,⁴ or by both. These effects operate against effective conjugative interaction between the 6-nitro- and 4'-amino-groups, and the deactivating effect of the nitro-substituent will therefore be felt mainly by the 4-amino-group. Monoacylation therefore gives the 4'-acetylamino-derivative (Ia).

The lack of conjugative interaction between the nitro-group and ring B is also reflected in the ¹H n.m.r.

			4H N.	m.r. assi	gnment	ts (τ) of	: substit	uted 3,	3′-dichie	probiphenyls (1)	
No. 1	Con- ditions * A	${ m X}$ ${ m NH}_2$	$_{\rm NH_2}^{ m Y}$	Z H	H _▲ 3·16	Н _в 2·80	${ m H_{C}} { m 2.65}$	H_D	H_E	NH ₂ 5·28	NH•CO	Ac
$\frac{2}{3}$	${}^{\mathrm{A}}_{\mathrm{A}}$	NH ₂ Cl	NH ₂ Cl	${ m NO_2} m NO_2$	${3 \cdot 18 \atop 2 \cdot 36}$	$3.10 \\ 2.66$	$2.87 \\ 2.36$	$\overbrace{2\cdot 70\\2\cdot 18}^{2\cdot 70}$	$2.72 \\ 1.74$	4.56 and 5.04		
4 5	A B P	H AcNH	H AcNH	${ m NO}_2$ H	2.07	2.33	$2 \cdot 5 - 3 \cdot 0 (m)$ $2 \cdot 15$		े2·18		0.4	7.86
0 7 8	C A	ACNH NH ₂ Cl	AcNH AcNH AcNH		2.07 1.68 1.67	2.65 2.69 2.68	2.37 2.54 2.49	$ \begin{array}{c} 2 \cdot 17 \\ \hline 2 \cdot 48 \\ 2 \cdot 19 \end{array} $	$\underbrace{\frac{1\cdot 31}{2\cdot 52}}_{1\cdot 78}$	7.15	0.35 and 0.03 4.3 1.32	7.86 and 7.78 7.76 7.85
9	в		AcNH	AcNH	2·05	2.60	2·42	2·32	2.07		0.38 and 0.43	7.85 and 8.03

* A, [²H₆]acctone at 100 MHz; B, [²H₆]dimethyl sulphoxide at 60 MHz; C, [²H₆]acctone at 60 MHz.

Waals forces acting between the ortho- and ortho'hydrogen atoms of the biphenyl system (III), and causing the rings to be inclined to each other at $ca. 45^{\circ}$, are reduced by the act of electrophilic substitution at

the 6- (or 2-) position, and thus additional stabilisation of the corresponding transition state, as depicted in (IVa \iff b), is allowed. However, once the act of electrophilic substitution has been completed, and the aromatic system has been re-formed [(IV \implies (I)], the increased steric interactions between the ortho- and

³ P. B. D. de la Mare and M. Hassan, J. Chem. Soc., 1957, 3004.

spectra. Thus, although the proton *ortho* to the nitrogroup is deshielded [cf. H_A in nos. 1 and 5 with H_E in nos. 2 and 6, respectively (Table)], the signal due to H_A in ring B is unchanged [cf. H_A in nos 1 and 2, and 5 and 6 (Table)], indicating that the electron density in ring B has been unaffected by introduction of a nitrogroup into ring A. Furthermore the signals due to H_B and H_C of ring B are moved to higher field by introduction of a nitro-group into ring A [cf. H_B and H_C of 1 and 2, and 5 and 6 (Table)]. This can be attributed partly to shielding by the nitro-group ⁴ in a non-planar biphenyl system, and partly to decreased deshielding by ring A, as a result of the increased dihedral angle between the two rings; this moves H_B and H_C further from the centre of the deshielding region of ring A. The proton *meta* to the nitro-group in ring A is not deshielded [cf. H_0 in nos 1 and 5 with H_D in nos. 2 and 6, respectively (Table)], despite the fact that it must experience a deshielding effect due to the nitro-group. This must reflect the decreased deshielding by ring B in the nitro-derivative, as compared to the parent compound, owing to the increased dihedral angle between the rings. The 6-acetylamino-group shows a similar effect on the dihedral angle [cf. nos 5 and 9 (Table)].

EXPERIMENTAL

3,3'-Dichloro-6-nitrobenzidine.—Dichlorobenzidine (13.84 g.) was added gradually to concentrated sulphuric acid (158 g.) below 50° with stirring; the solution was then cooled to 10° and potassium nitrate (5.4 g.) was added during 2 hr. below 20°. After a further 3 hr. at 20° the

⁴ R. W. Franck and M. A. Williamson, J. Org. Chem., 1966, **31**, 2420, and references therein.

solution was poured into water (350 ml.), and the precipitated salt was collected, resuspended in boiling water (61.), and basified with ammonia to give the free *base* (11·1 g.), m.p. 165—168° [from benzene-light petroleum (b.p. 40— 60°)-ether] (Found: C, 48·4; H, 3·0; Cl, 23·0; N, 13·7. $C_{12}H_7Cl_2N_3O_2$ requires C, 48·3; H, 3·2; Cl, 23·8; N, 14·1%).

3,3',4,4'-Tetrachloro-6-nitrobiphenyl.—A solution of 3,3'dichloro-6-nitrobenzidine (15.0 g.) in glacial acetic acid (450 ml.) was added, at 20—25° with cooling, to nitrosylsulphuric acid prepared by adding sodium nitrite (9.0 g.) to concentrated sulphuric acid (90 ml.) and heating the mixture to 70°. The 'tetrazo '-solution was added during 5 min. to copper(I) chloride (11.1 g.) in concentrated hydrochloric acid (110 ml.); the mixture was stirred for 1 hr. and the precipitated solid was collected and washed thoroughly with water to give 3,3',4,4'-tetrachloro-6-nitrobiphenyl (12.8 g.), m.p. 86—89° (from aqueous ethanol) (Found: C, 43.0; H, 1.8; Cl, 40.25; N, 3.9. $C_{12}H_5Cl_4NO_2$ requires C, 42.7; H, 1.5; Cl, 42.1; N, 4.15%).

6-Amino-3,3',4,4'-tetrachlorobiphenyl.— 3,3',4,4'-Tetrachloro-6-nitrobiphenyl (10.0 g.) was dissolved in glacial acetic acid (450 ml.) at 100°; tin(II) chloride dihydrate (34.5 g.) in concentrated hydrochloric acid (150 ml.) was added and the mixture was stirred for 2 hr. The solution was then basified with sodium hydroxide (300 g.) and extracted with ether to give 6-amino-3,3',4,4'-tetrachlorobiphenyl (4.29 g.) as an oil which slowly solidified, m.p. 79—82° (from aqueous ethanol) (Found: C, 47.9; H, 2.6; N, 4.7. $C_{12}H_7Cl_4N$ requires C, 46.9; H, 2.3; N, 4.6%).

3,3',4,4',6-Pentachlorobiphenyl.— 6-Amino-3,3',4,4'-tetrachlorobiphenyl (3.0 g.) in glacial acetic acid (100 ml.) was diazotised with nitrosylsulphuric acid [sodium nitrite (2.0 g.) in concentrated sulphuric acid (20 ml.)] and the solution was added to copper(1) chloride (2.0 g.) in concentrated hydrochloric acid (20 ml.). The resulting solution was basified and extracted with ether to give the *pentachlorobiphenyl* (1.89 g.), m.p. 105—107° (from aqueous dimethylformamide) (Found: C, 44.3; H, 2.0. C₁₂H₅Cl₅ requires C, 44.1; H, 1.5%).

3,3'-Dichloro-6-nitrobiphenyl. 3,3'-Dichloro-6-nitrobenzidine (2.5 g.) in glacial acetic acid (55 ml.) was 'tetrazotised' with ice-cooled nitrosylsulphuric acid [sodium nitrite (1.5 g.) in concentrated sulphuric acid (20 ml.)] and added, after 20 min., to a suspension of copper(I) oxide monohydrate (5.0 g.) in ethanol (275 ml.). The mixture stirred for 15 hr., then diluted with water and extracted with ether to give 3,3'-dichloro-6-nitrobiphenyl (1.58 g.) as an oil which slowly solidified, m.p. 87—88° (from aqueous dimethylformamide) (Found: C, 54.1; H, 3.2; Cl, 25.9; N, 5.15. C₁₂H₇Cl₂NO₂ requires C, 53.7; H, 2.6; Cl, 26.5; N, 5.2%).

4'-Acetylamino-4-amino-3,3'-dichloro-6-nitrobiphenyl.— Acetyl chloride (14·4 g.) was added dropwise to 3,3'dichloro-6-nitrobenzidine (10·0 g.) in acetone (400 ml.) and water (100 ml.) at 0—5° during 2 hr. The solution was neutralised (Congo Red) with sodium acetate solution, stirred for a further 2 hr. at 0—5° in a stoppered flask, and poured into water. The resulting precipitate was

J. Chem. Soc. (C), 1971

View Article Online

collected and washed with aqueous acetone (1:1) to give the monoacetyl derivative (10.4 g.) m.p. 147—149° (from aqueous ethanol) (Found: C, 49.1; H, 3.5; Cl, 20.3; N, 12.15. C₁₄H₁₁Cl₂N₃O₃ requires: C, 49.4; H, 3.2; Cl, 20.9; N, 12.35%).

4'-Acetylamino-3,3'4-trichloro-6-nitrobiphenyl. 4'-Acetylamino-4-amino-3,3'-dichloro-6-nitrobiphenyl (5.66 g.) in glacial acetic acid (100 ml.) was diazotised with nitrosyl-sulphuric acid [sodium nitrite (3.0 g.) in concentrated sulphuric acid (30 ml.)] and added to copper(I) chloride (3.7 g.) in concentrated hydrochloric acid (37 ml.). The solution was stirred for 1 hr., then diluted with water, and the precipitate (6.05 g.) gave 4'-acetylamino-3,3',4-trichloro-6-nitrobiphenyl, m.p. 202-203° (from aqueous dimethyl-formamide) (Found: N, 7.95. $C_{14}H_9Cl_3N_2O_3$ requires N, 7.8%).

4',6-Bisacetylamino-3,3',4-trichlorobiphenyl.—4'-Acetylamino-3,3',4-trichloro-6-nitrobiphenyl (11·0 g.) was dissolved in glacial acetic acid (300 ml.) and tin(II) chloride dihydrate (51·75 g.) in concentrated hydrochloric acid (220 ml.) was added. After 2 hr. at room temperature the solution was basified with sodium hydroxide and extracted with ether to give impure 4'-acetylamino-6-amino-3,3',4trichlorobiphenyl (8·3 g.) as an oil. The crude amine was refluxed with glacial acetic acid (50 ml.) and acetic anhydride (14 ml.) for 2 hr., diluted with water, and filtered to give the bisacetylamino-derivative (8·3 g.), m.p. 213—214° (from benzene) (Found: N, 7·2. $C_{16}H_{13}Cl_3N_2O_2$ requires N, 7·5%).

4,4'-Bisacetylamino-3,3'-dichloro-6-nitrobiphenyl. (a) A solution of 3,3'-dichloro-6-nitrobenzidine (10.0 g.) in glacial acetic acid (15 ml.) was refluxed with acetic anhydride (15 ml.) and concentrated sulphuric acid (1 ml.) for 2 hr., and diluted with water to give the bisacetyl derivative (11.6 g.), m.p. 256—258° (from aqueous ethanol) (Found: C, 49.95; H, 3.55; Cl, 18.5; N, 11.2. $C_{16}H_{13}Cl_2N_3O_4$ requires C, 50.25; H, 3.4; Cl, 18.6; N, 11.0%).

(b) A solution of dichlorobenzidine (8.4 g.) in glacial acetic acid (110 ml.) was refluxed with acetic anhydride (15 ml.) and concentrated sulphuric acid (5 drops) for 3 hr. and poured into water to give the bisacetyl derivative, m.p. $314-315^{\circ}$ (from dimethylformamide) (lit.⁵ >340°) (Found: C, 56.8; H, 4.3; Cl, 21.05; N, 8.3. Calc. for C₁₆H₁₄Cl₂N₂O₂: C, 57.0; H, 4.15; Cl, 21.1; N, 8.3%). The bisacetyl derivative (9.15 g.) was dissolved in concentrated sulphuric acid (79.0 g.) and potassium nitrate (2.7 g.) was added gradually below 20° during 2 hr. The solution was stirred for 3 hr., then poured into water, and the precipitate was washed thoroughly to give 4,4'-bisacetyl-amino-3,3'-dichloro-6-nitrobiphenyl (9.65 g.), m.p. and mixed m.p. 254-256° (from aqueous dimethylformamide).

The structure was confirmed by hydrolysis of a portion $(1 \cdot 0 \text{ g.})$ with 80% sulphuric acid to give 3,3'-dichloro-6nitrobenzidine $(0 \cdot 5 \text{ g.})$, which was identical with an authentic sample obtained by nitration of 3,3'-dichlorobenzidine.

[0/1213 Received, July 15th, 1970]

⁵ F. L. W. van Roosmalen, Rec. Trav. chim., 1934, 53, 359.