

S0040-4020(96)00236-0

Novel Asymmetric Syntheses of (-)-Malyngolide and (+)-epi-Malyngolide

Dieter Enders* and Monika Knopp

Institut für Organische Chemie, Rheinisch Westfälische Technische Hochschule Aachen Professor-Pirlet-Straße 1, D-52074 Aachen, Germany

Abstract: The diastereo- and enantioselective synthesis of (-)-malyngolide [(S,R)-1], an antibiotic against *Mycobacterium smegmatis* and *Streptococcus pyogenes*, using the asymmetric Carroll rearrangement as key step is described. Furthermore, the diastereo- and enantioselective synthesis by double α, α' -alkylation using SAMP/RAMP hydrazone methodology affords the diastereomer (+)-epi-malyngolide [(S,S)-1]. Copyright © 1996 Elsevier Science Ltd

(-)-Malyngolide [(S,R)-1] was firstly isolated from the blue-green marine algae Lyngbya majuscula in 1979¹ and showed antibiotic activity against Mycobacterium smegmatis and Streptococcus pyogenes.² Due to its structural simplicity, the combination of the two stereogenic centres of which one is quarternary and the large number of more complex natural products that possess a five substituted δ -lactone moiety, malyngolide has been a target of a large number of syntheses. The first reported synthesis was developed by Mukaiyama et al..³ Up to now, several syntheses of racemic malyngolide,⁴ several "ex chiral pool"-syntheses⁵ and eight asymmetric syntheses⁶ to generate the optically active antibiotic have been reported.

In this paper we report an efficient synthesis of (-)-malyngolide [(S,R)-1] in high enantiomeric purity (*ee* > 96%). As described in scheme 1, our retrosynthetic approaches start from the β -hydroxyketones 2 which are accessible by retro-Baeyer-Villiger oxidation. Recently, we reported the first asymmetric auxiliary-directed [3.3]-sigmatropic Carroll rearrangement of β -hydrazonoesters leading to γ , δ -unsaturated- α -quarternary- β -sub-

stituted ketones.⁷ The first concept **A** is a synthesis using this asymmetric Carroll rearrangement. Key step in this synthesis is the diastereo- and enantioselective [3.3]-sigmatropic rearrangement of allyloxycarbonylcyclopentanone RAMP hydrazone [(R)-3] to generate the quarternary stereogenic centre. The tertiary stereogenic centre is obtained by α -alkylation. Alternatively concept **B** generates both stereogenic centres by double α, α' -alkylation of hydrazone (R)-4 employing again the SAMP/RAMP hydrazone methodology leading to (+)-epi-malyngolide [(S,S)-1]. In both cases, the desired absolute configuration is obtained by using RAMP as chiral auxiliary.

Scheme 1. Retrosynthetic analysis of (S,R)-1 and (S,S)-1

As depicted in scheme 2 the allyloxycyclopentanone 5 was converted to the corresponding RAMP hydrazone (*R*)-3 in excellent yield. Upon double deprotonation with 2.4 equiv. lithium 2,2,6,6-tetramethylpiperidide (LiTMP) in toluene the intermediate dianion (*R*)-6 underwent rearrangement and was immediately reduced with 5 equiv. LiAlH₄ in diethyl ether to the α -quarternary hydrazone (*R*,*S*)-7. The yield over these two steps was only 57% but the diastereomeric excess was very good (*de* > 96%). The absolute configuration is assumed as (*R*,*S*)-7 in accordance with earlier results of the asymmetric Carroll rearrangement of β -hydrazonoesters, which was assigned by X-ray structure determination,⁷ or intermolecular electrophilic substitutions of β -hydrazonoesters.⁸ We postulate an intramolecular chelation of the lithium by the methoxymethyl group of the hydrazonoester dienolate (*R*)-6 and consequently the allylic moiety approaches from the less hindered front side (*si*-attack).⁹ The chiral auxiliary was oxidatively cleaved with ozone in

excellent yield, with no epimerisation or concomitant oxidation of the C=C-double bond leading to ketone (R)-8. The enantiomeric excess (ee > 96%) was measured after formation of its MPA ester.¹⁰

Reaction conditions.

a) RAMP, toluene, *p*TsOH, molecular sieves, b) 2.4 equiv. LiTMP, toluene, -100 °C, c) 1. rt, 2. LiAlH₄, diethyl ether, d) ozone, pentane, -78 °C, e) 1. TBSCI, Hünig's base, DMF, rt, 2. OsO₄, NalO₄, dioxane, rt, f) C₇H₁₅PPh₃Br, KO*t*Bu, THF, -78 °C, g) H₂, Pd/C, h) 1. LDA, THF, CH₃I, -78 °C, 2. LDA, THF, -78 °C; NH₄CI, i) *m*CPBA, CHCl₃, NaHCO₃, rt.

Scheme 2. Synthesis of (-)-malyngolide [(S,R)-1] via asymmetric Carroll rearrangement

After protection of the hydroxyl function as the *t*-butyldimethylsilyl-(TBS)-ether¹¹ the terminal double bond was oxidatively cleaved *via* dihydroxylation with catalytic amounts of OsO_4 in dioxane with subsequent periodate cleavage with excess $NaIO_4$ as one pot reaction.¹² The aldehyde (*R*)-9 was obtained in a good yield. The chain-extension was achieved by Wittig reaction of the aldehyde (*R*)-9 with heptyltriphenylphosphonium bromide in the presence of KOtBu. The olefin (*R*)-10 was yielded as *E/Z*-mixture of 1/5.7 in good yield. In the following step the olefin (*R*)-10 was reduced by hydrogenation with H₂ on Pd/C affording the α -quarternary ketone (*S*)-11 in very good yield. The tertiary stereogenic centre has been introduced by alkylation with methyl iodide. The crude product was again deprotonated with excess LDA and diastereoselectively protonated at -78 °C leading to ketone (*S*,*R*)-2 in good yield and very good diastereo- and enantiomeric excesses (*de* > 96%, *ee* > 96%), which were determined by comparison of the optical rotation value measured with the literature data.^{6c} In the final step, the lactone was obtained by Baeyer-Villiger oxidation in moderate yield,¹³ which occurred with complete retention of absolute configuration. Comparison of the optical rotation value with that of the reported known compound^{1,3b,6c} confirmed the optical purity of the product (*S*,*R*)-1.

Reaction conditions. a) RAMP, toluene, *p*TsOH, molecular sieves, b) LDA, toluene/HMPA, *n*NonI, -100 °C, c) 1. LiAlH₄, diethyl ether, 2. separation by flash chromatography, d) LDA, diethyl ether, CH₃I, -100 °C, e) ozone, pentane, -78 °C, f) *m*CPBA, CHCl₃, NaHCO₃, rt.

Scheme 3. Synthesis of (+)-epi-malyngolide (S,S)-1

The synthesis of (+)-epi-malyngolide [(S,S)-1] was carried out by double α, α' -alkylation using the SAMP/RAMP hydrazone methodology (Scheme 3). Firstly, the ethoxycarbonylcyclopentanone 12 was converted to the corresponding RAMP hydrazone (R)-4 in excellent yield, deprotonated with LDA in toluene

and alkylated with excess *n*-nonyl iodide in the presence of HMPA¹⁴ at -100 °C. The α -quarternary hydrazone (*R*,*R*)-13 was obtained by alkylation in very good yield and a diastereomeric excess of 63%. The absolute configuration of the α -quarternary hydrazone 13 was investigated by NMR spectroscopy using NOE measurements and was in accordance with earlier results concerning electrophilic substitutions *via* SAMP/RAMP hydrazones creating quarternary stereogenic centres.⁸ We postulate again the chelation of the lithium by the methoxymethyl group of the chiral auxiliary and consequently, the alkyl iodide approaches from the less hindered front side. Enrichment by flash chromatography or HPLC proved fruitless. However, enrichment by flash chromatography was possible after reduction of the ester to the alcohol (*R*,*R*)-14 with 5 equiv. LiAlH₄ in diethyl ether at room temperature leading to the diastereomerically pure β -hydroxyhydrazone (*R*,*R*)-14. The tertiary stereogenic centre was introduced by deprotonation with 1.4 equiv. LDA in diethyl ether and alkylation with excess methyl iodide leading to hydrazone (*R*,*R*,*S*)-15. Oxidative cleavage of the chiral auxiliary occurred without epimerisation to afford the ketone (*S*,*S*)-2 in very good yield. The lactone (*S*,*S*)-1 was obtained by Baeyer-Villiger oxidation. The final step was achieved in 56% yield with complete retention of absolute configuration leading to the enantiopure (+)-*epi*-malyngolide [(*S*,*S*)-1]. Comparison of the optical rotation value with that of the reported known compound^{3a,6g} confirmed the optical purity of the product.

In conclusion, two new concise highly efficient diastereo- and enantioselective strategies to synthesise optically pure (-)-malyngolide [(S,R)-1] in 9 steps with an overall yield of 10% (variant A) and (+)-epi-malyngolide [(S,S)-1] in 6 steps with an overall yield of 23% (variant B) with excellent enantiomeric excesses of > 96% have been developed.

EXPERIMENTAL

General: All reactions were carried out using standard Schlenk techniques unless otherwise stated. Solvents were dried and purified by conventional methods prior to use. Tetrahydrofuran (THF) was freshly distilled from sodium, dichloromethane, pentane and DMF from CaH₂ under argon. Light petroleum refers to the fraction with b.p. 40 - 80 °C. Reagents of commercial quality were used from freshly opened containers unless otherwise stated. *n*-Butyllithium (1.6 M in hexane) was purchased from Merck, Darmstadt. – Analytical TLC: Merck glass-backed silica 60 F254 plates. – Preparative column chromatography: Merck silica gel 60, particle size 0.040 - 0.063 mm (230 - 400 mesh) (flash). – Optical rotation: Perkin Elmer P 241 polarimeter; solvents of Merck UVASOL quality. – IR spectra: Perkin Elmer 1420 and Perkin Elmer FT/IR 1750. – ¹H NMR spectra (300 MHz), ¹³C NMR spectra (75 MHz): Varian VXR 300 and Gemini 300 (solvent: CDCl₃, TMS as internal standard). – Mass spectra: Varian MAT 212 (EI 70 eV) (relative intensities in paranthesis). Elemental analyses: Heraeus CHN-O-Rapid.

2-(Prop-2'-enoxycarbonyl)cyclopentanone (5): Adipinic acid diallyl ester (1.11 g, 50 mmol) was added dropwise to a stirred suspension of sodium (1.2 g, 50 mmol) in refluxing toluene (200 ml) and stirring was continued for 6 h. The reaction mixture was given to a mixture of 0.2 N HCl/ice (200 g), the organic layer was separated, the aqueous layer was extracted with diethyl ether for three times and the combined organic layers were dried over MgSO₄. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 10/1) afforded 4.05 g (48%) of a colourless oil. $-R_f = 0.3$ (petroleum ether/diethyl ether = 2/1). - keto : enol > 98 : 2. - IR (film): $\tilde{v} = 3085$ (w, =CH₂), 2970, 2883 (m, CH), 1757 (s, C=O_{ketone}), 1728 (s, C=O_{ester}), 1620 (w, C=C), 1335 (m), 1298 (m), 1251 (m), 1186 (m), 1113 (m), 993 (m), 931 (m, HC=CH₂) cm⁻¹. - ¹H NMR: $\delta = 1.82 \cdot 1.97$ (m, 1H, CHHCH₂C=O), 2.09-2.24 (m, 1H, CHHCH₂C=O), 2.26-2.36 (m, 4H, CH₂CH₂CH₂C=O), 3.20 (t, J = 9.1 Hz, 1H, CHC=O), 4.61-4.66 (m, 2H, CH₂CH=CH₂), 5.23 (dt, J = 10.4/1.4 Hz, 1H, CH=CHH_{cis}), 5.34 (dq, J = 17.3/1.7 Hz, 1H, CH=CHH_{trans}), 5.85-5.95 (m, 1H, CH=CH₂). - ¹³C NMR: $\delta = 20.98$ (CH₂CH₂C=O), 27.45 (CH₂CHC=O), 38.01 (CH₂C=O), 54.72 (CHC=O), 65.71 (OCH₂CH=), 118.23 (CH=CH₂), 131.90 (CH=CH₂), 169.08 (COO), 212.06 (C=O). - MS (70 eV), m/z (%) = 168 (11.5, M⁺), 140 (16) [M⁺-CH₂=CH₂], 128 (6) [C₅H₇OCOOH⁺], 111 (48) [C₅H₆OCOH⁺], 99 (18) [C₆H₉O⁺], 83 (34) [C₆H₉⁺], 71 (26) [C₅H₁H⁺], 55 (69) [C₄H₇⁺], 41 (100) [C₃H₅⁺]. - C₉H₁₂O₃ [168.2] calcd. C: 64.27, H: 7.19; found C: 64.22, H: 7.48.

(E, 2R)-(+)-1-[2'-(Prop-2''-enoxycarbonyl)cyclopentylidene]amino-2-methoxymethylpyrrolidine [(*R*)-**3**]: β-Ketoester 5 (2.52 g, 15 mmol) and RAMP (2.34 g, 18 mmol) were heated to reflux in toluene (20 ml) in the presence of pTsOH (0.15 g, 10 mol-%) and molecular sieves. After filtration, to remove the molecular sieves the reaction mixture was evaporated under reduced pressure, the residue was dissolved in diethyl ether, washed twice with saturated aqueous NaCl solution and dried over MgSO4. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether/NEt₃ = 5/1/0.1) yielded 4.07 g (97%) of a colourless liquid. $-R_f = 0.4$ (petroleum ether/diethyl ether = 1/1). $- \left[\alpha\right]_{D}^{20} = +85.3$ (c = 1.3, CHCl₃). - enhydrazine : hydrazone > 98 : 2. -IR (film): $\tilde{v} = 3081$ (w, =CH₂), 2955, 2873 (m, CH), 1664 (s, C=O_{enhydrazine}), 1607 (s, C=C_{enhydrazine}), 1459 (m), 1268 (s), 1128 (m), 1033 (m) cm⁻¹. - ¹H NMR: $\delta = 1.65-1.86$ (m, 5H, NCH₂CH₂CHH, CH₂CH₂CN), 1.89-2.01 (m, 1H, NCH₂CH₂CHH), 2.55 (t, J = 8.2 Hz, 2H, CH₂C=CN), 2.57 (q, J = 9.1 Hz, 1H, NCHH), 2.69 (t, J = 7.7 Hz, 2H, CH₂CN), 2.73-2.82 (m, 1H, NCHH), 3.22 (dt, J = 9.1/4.7 Hz, 1H, NCH), 3.31 (dd, J = 9.3/6.0 Hz, 1H, CH₃OCHH), 3.33 (s, 3H, OCH₃), 3.42 (dd, J = 9.3/3.9 Hz, 1H, CH₃OCHH), 4.60 (dt, J = 5.2/1.4 Hz, 2H, OCH₂CH=CH₂), 5.19 (dd, J = 10.4/1.4 Hz, 1H, CH=CHH_{cis}), 5.30 (dd, J = 17.3/1.7 Hz, 1H, CH=CH H_{trans}), 5.96 (ddd, J = 17.3/10.7/5.5 Hz, 1H, CH=CH₂), 7.74 (s, 1H, NH). - ¹³C NMR: $\delta = 21.31$ (NCH₂CH₂), 21.37 (CH₂CH₂CN), 26.41 (NCH₂CH₂CH₂), 30.02 (CH₂C=CN), 33.30 (CH₂CN), 58.27 (NCH₂), 59.63 (CH₂OCH₃), 63.88 (OCH₂CH=), 66.69 (NCHCH₂O), 74.28 (CH₂OCH₃), 91.68 (C=CN), 117.18 (CH=CH₂), 134.17 (CH=CH₂), 166.85 (COO), 168.33 (C=O). - MS (70 eV), m/z (%) = 280 (19) [M⁺], 235 (29) [M⁺--CH₂OCH₃], 177 (100) [M⁺--CH₂OCH₃--C₃H₁₆O], 163 (7) [M⁺--CH₂OCH₃--C₄H₈O], 149 (22) $[M^+-CH_2OCH_3-C_5H_{10}O]$, 114 (5) $[CH_3OCH_2C_4H_7N^+]$, 108 (56) $[C_7H_8O^+]$, 98 (3) $[C_6H_{10}O^+]$, 82 (11) $[C_6H_{10}^+]$, 70 (27) $[C_4H_8N^+]$, 55 (10) $[C_4H_7^+]$, 45 (12) $[CH_2OCH_3^+]$, 41 (43) $[C_3H_7^+]$. $-C_{15}H_{24}N_2O_3$ [280.4] calcd. C: 64.26, H: 8.63, N: 9.99; found C: 64.40, H: 8.85, N: 9.98.

(2R,2'S)-(-)-[2'-Hydroxymethyl-2'-(prop-2''-enyl)cyclopentylidene] amino-2-methoxymethylpyrrolidine

[(2R,2'S)-7]: A solution of RAMP hydrazone (R)-5 (0.84 g, 3 mmol) in toluene (2 ml) was added dropwise to 2.4 equiv. of a LTMP solution in toluene [0.73 g (7.2 mmol) TMP/ 4.5 ml (7.2 mmol) 15% nBuLi solution in hexane] at -100 °C. The reaction mixture was allowed to warm to room temperature and stirring was continued for 15 h. The reaction mixture was then added to a stirred suspension of LiAlH₄ (0.57 g, 15 mmol) in diethyl ether (50 ml) and stirring was continued until for 2 h. The hydrolysis was achieved by adding 1% HCl. After filtration from aluminum hydroxide precipitate the organic layer was washed with saturated NaCl solution and dried over MgSO₄. The crude product was purified by flash chromatography (silica gel, petroleum ether/diethyl ether = 2/1) to afford 0.41 g (57%) of a pale yellow oil. $-R_f = 0.1$ (petroleum ether/diethyl ether = 1/1). $- [\alpha]_{D}^{20} = -229.8$ (c = 0.3, CHCl₃). - de > 96% (determined by ¹³C NMR). - IR (film): $\tilde{v} = 3410$ (m, OH), 3075 (m, =CH₂), 2956, 2876 (s, CH), 1639 (m, C=N), 1451 (m), 1377 (m), 1124, 1100 (s), 914 (m, =CH₂) cm⁻¹. – ¹H NMR: δ = 1.45-2.02 (m, 8H, CH₂CH₂CH₂CN, NCH₂CH₂CH₂), 2.18-2.29 (m, 1H, CHHCN), 2.32 (d, J = 7.7 Hz, 2H, CH₂CH=CH₂), 2.47 (q, J = 8.7 Hz, 1H, NCHH), 2.49-2.61 (m, 1H, CHHCN), 3.26 (dt, J = 9.1/6.4 Hz, 1H, NCHH), 3.33 (s, 3H, CH₃O), 3.34-3.62 (m, 5H, CH₃OCH₂, CH₂OH, NCH), 4.20 (s, 1H, OH), 5.07 (d, J = 10.1 Hz, 1H, CH=CHH_{cis}), 5.08 (d, J = 16.8 Hz, 1H, CH=CHH_{trans}), 5.77 (ddt, J = 16.8/10.1/7.7 Hz, 1H, CH=CH₂). $- {}^{13}$ C NMR: $\delta = 21.66$ (CH₂CH₂C=N), 22.18 (NCH₂CH₂), 26.30 (NCH₂CH₂CH₂), 31.33 (CH₂CC=N), 33.74 (CH₂C=N), 39.94 (CH₂CH=CH₂), 49.80 (CC=N), 54.16 (NCH₂), 59.09 (CH₂OCH₃), 66.11 (NCHCH₂O), 66.97 (CH₂OH), 76.39 (CH₂OCH₃), 117.83 (CH=CH₂), 134.55 (CH=CH₂), 173.87 (C=N). - MS (70 eV), m/z (%): 266 (4) [M+], 221 (72) [M+-CH₂OCH₃], 191 (2) $[M^{+}-CH_{2}OCH_{3}-CH_{2}O], 122 (13) [C_{7}H_{10}N_{2}^{+}], 114 (11) [CH_{3}OCH_{2}C_{4}H_{7}N^{+}], 96 (13) [C_{7}H_{12}^{+}], 82 (1)$ $[C_{6}H_{10}^+]$, 70 (100) $[C_{4}H_{8}N^+]$, 55 (13) $[C_{4}H_7^+]$, 45 (11) $[CH_2OCH_3^+]$, 43 (20) $[C_{3}H_7^+]$. $-C_{15}H_{26}N_2O_2$ [266.4]: calcd. C: 67.63, H: 9.84, N: 10.52; found C: 67.56, H: 9.92, N: 10.59.

 $(2R)^{-(+)-2-Hydroxymethyl-2-(prop-2'-enyl)cyclopentanone [(R)-8]$: The hydrazone $(2R,2'S)^{-7}$ (0.72 g, 3 mmol) was dissolved in pentane at -78 °C and ozone was bubbled through for 6 min. Evaporation of the solvent and purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 2/1) afforded 0.36 g (78%) of a pale yellow liquid. $-R_f = 0.6$ (petroleum ether/diethyl ether = 1/2). $-[\alpha]_D^{20} = + 39.8$ ($c = 1.0, CHCl_3$). -ee > 96% (determined by ¹H NMR of the MPA ester). - IR (film): $\tilde{v} = 3442$ (m, br, OH), 3076 (w, =CH₂), 2959, 2882 (s, CH), 1734 (s, C=O), 1639 (m, C=C), 1418 (m), 1304 (s, br), 1123 (m), 1058 (m), 922 (m) cm⁻¹. $- ^{1}H$ NMR: $\delta = 1.80^{-}2.30$ (m, 6H, CH₂CH₂CH₂CO), 2.66 (s, 1H, OH), 3.38 (s, 2H, CH₂CH=CH₂), 3.49 (d, J = 11.1 Hz, 1H, CHHOH), 3.65 (d, J = 11.1 Hz, 1H, CHHOH), 5.08 (dd, J = 11.4/1.4 Hz, 1H, CH=CHH), 5.09 (dd, J = 15.1/1.4 Hz, 1H, CH=CHH), 5.70 (ddt, 17.5/9.7/7.3 Hz, 1H, CH=CH₂). $- ^{13}C$ NMR: $\delta = 19.05$ (CH₂CH₂C=O), 30.30 (CH₂CC=O), 37.10, 38.94 (CH₂C=O, CH₂CH=CH₂), 56.18 (CC=O), 65.74 (CH₂OH), 118.64 (CH=CH₂), 133.24 (CH=CH₂), 223.57 (C=O). - MS (70 eV); m/z (%) = 154 (3) [M⁺], 123 (5) [M⁺-CH₂OH], 110 (14) [C₅H₆OCO⁺], 94 (21) [M⁺-C₃H₆-H₂O], 82 (16) [C₆H₁₀⁺], 79 (45) [C₅H₃O⁺], 67 (40) [C₅H₇⁺], 55 (28) [C₄H₇⁺], 41 (58) [C₃H₅⁺]. $- C_9H_{14}O_2$ [154.2]: calcd. C: 70.10, H: 9.15; found C: 70.48, H: 9.39.

(2R)-(-)-2-tert-Butyldimethylsilyloxymethyl-2-(2'-oxoethyl)cyclopentanone [(R)-9]: I.) β -Hydroxyketone (R)-8 (0.74 g, 4.8 mmol) was dissolved in DMF (4 ml) and transformed with TBSCl (1.44 g, 9.6 mmol) and imidazole (0.95 g, 14.4 mmol) and stirring was continued for 1 h (TLC control). The reaction mixture was diluted with petroleum ether (50 ml) washed with water and dried over MgSO₄. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether/NEt₃ = 20/1/0.5) afforded 1.24 g (96%) of a pale yellow liquid. $-R_f =$ 0.7 (petroleum ether/diethyl ether = 4/1). – II.) The protected β -hydroxyketone (1.21 g, 4.5 mmol) was dissolved in dioxane/water (13.5 ml/4.5 ml). A 2% OsO₄ solution in dioxane (1.2 ml, 2 mol-%) was added at room temperature, giving a black solution, presumably due to the formation of the osmate ester. After 5 minutes NaIO₄ (2.03 g, 9.5 mmol) was added and stirring was continued for 2 h until the solution became light again. The reaction mixture was extracted three times with diethyl ether (100 ml), dried over MgSO4 and purification by flash chromatography (silica gel, petroleum ether/diethyl ether/NEt₃ = 4/1/0.1) yielded 0.92 g (76%) of a colourless liquid. $-R_f = 0.6$ (petroleum ether/diethyl ether = 1/1). $- [\alpha]_D^{20} = -21.1$ (c = 1.2, CHCl₃). -ee > 96%. - IR (film): $\tilde{v} = 2955$, 2930, 2886, 2858 (s, CH), 1739 (s, C=O), 1725 (s, C=O), 1471 (m), 1404, 1389 (m), 1255 (m), 1102 (s, SiOC), 839 (s), 779 (s) cm⁻¹. -1H NMR: $\delta = 0.03$ (s, 3H, CH₃Si), 0.04 (s, 3H, CH₃Si), 0.88 (s, 9H, (CH₃)₃CSi), 1.88-2.04 (m, 3H, CHHCH₂CH₂CO), 2.16-2.34 (m, 2H, CHHCH₂CHHCO), 2.42-2.54 (m, 1H, CHHCO), 2.62 (dd, J = 17.2/1.1 Hz, 1H, CHHCHO), 2.71 (dd, J = 17.9/1.8 Hz, 1H, CHHCHO), 3.43 (d, J = 9.3 Hz, 1H, CHHOSi), 3.59 (d, J = 9.3 Hz, 1H, CHHOSi), 9.67 (s, 1H, CHO). $- {}^{13}C$ NMR: $\delta = -5.71$ (CH₃Si), -5.65 (CH₃Si), 18.20 ((CH₃)₃CSi), 19.23 (CH₂CH₂C=O), 25.78 ((CH₃)₃CSi), 30.81 (CH₂CC=O), 38.30 (CH₂C=O), 48.15 (CH₂CHO), 51.81 (CC=O), 66.75 (CH₂OSi), 199.88 (CHO), 220.78 (C=O). – MS (70 eV), m/z (%) = 271 (2) [M++1], 253 (2) [M+–OH], 229 (2) [M+– $C_{3}H_{6}$], 213 [M⁺-C₄H₉], 183 (69) [M⁺-C₆H₁₅], 169 (69), 139 (12), 121 (10), 93 (12), 75 (100), 67 (9) $[C_5H_7^+]$, 61 (15), 43 (26) $[C_3H_7^+]$. $-C_{14}H_{26}O_3$ Si [270.5]: calcd. C: 62.18, H: 9.69; found C: 62.47, H: 9.78.

(E.2R)-(+)-tert-Butyldimethylsilyloxymethyl-2-(non-2'-enyl)cyclopentanone [(E,2R)-10]: A solution of t-BuLi (2.25 ml of 15% in pentane, 3.6 mmol) was added dropwise to a solution of heptyltriphenylphosphonium bromide (1.72 g, 3.9 mmol) in THF (10 ml) at -78 °C and stirring was continued for 2 h at -78 °C, the solution becoming light orange. Aldehyde (R)-9 (0.81 g, 3 mmol) in THF (2 ml) was added and stirring was continued overnight causing the solution become yellow again. The reaction mixture was poured into petroleum ether (200 ml) and after filtration to remove the solid purification by flash chromatography (silica gel, petroleum ether/diethyl ether/NEt₃ = 20/1/0.5) afforded 0.78 g (74%) of a colourless liquid. $-R_f = 0.8$ (petroleum ether/diethyl ether = 5/1). -E/Z (C=C) 1 : 5.7 (determined by ¹³C NMR). $-[\alpha]_D^{20} = + 5.8$ (c = 1.0, CHCl₃). -ee > 96%. - IR (film): $\tilde{v} = 2956$, 2927, 2856 (s, CH), 1741 (s, C=O), 1465 (s), 1405 (m), 1254 (s), 1162 (m), 1099 (s, br, SiOC), 1007 (m), 839 (s), 778 (s) cm⁻¹. - ¹H NMR: $\delta = 0.00$ (s, 3H, CH₃Si), 0.02 (s, 3H, CH₃Si), 0.86 (s, 9H, (CH₃)₃CSi), 0.88 (t, J = 7 Hz, 3H, CH₃O), 1.24-1.32 (m, 10H, CH₃(CH₂)₅), 1.76-2.22 (m, 8H, CH₂CH₂CH₂CO, CH₂CH=CH), 3.41 (d, J = 9.3 Hz, 1H, CHHOSi), 3.68 (d, J = 9.3 Hz, 1H, CCH₂CH=CH). - ¹³C NMR: $\delta = -5.66$ (CH₃Si), -5.64 (CH₃Si), 14.60 (CH₃), 18.70 ((CH₃)₃CSi), 19.97

 $(CH_2CH_2C=O), 23.18 (CH_3CH_2), 26.33 ((CH_3)_3CSi), 27.80, 29.55, 30.12, 30.64, 31.43, 32.32 (CH_2CC=O, CCH_2CH=, CH_3CH_2(CH_2)_4), 40.04 (CH_2C=O), 54.65 (CC=O), 68.01 (CH_2OSi), 124.39 (CH_2CH=CH), 133.71 (CH_2CH=CH), 223.10 (C=O). - MS (70 eV), <math>m/z$ (%) = 353 (1) [M+] 339 (2) [M+-CH_2], 297 (100) [M+-C_4H_8], 213 (11) [M+-C_{10}H_{20}], 171 (7), 142 (3), 121 (3), 105 (5), 89 (9), 75 (29), 55 (6) [C_4H_7+]. - C_{21}H_{40}O_2Si [352.6]: calcd. C: 71.53, H: 11.43; found C: 71.55, H: 11.69.

(2*S*)-(+)-2-*Hydroxymethyl*-2-*nonylcyclopentanone* [(2*S*)-11]: The unsaturated ketone (*R*)-10 (0.63 g, 1.8 mmol) was dissolved in methanol (10 ml). After addition of a catalytic amount of Pd/C (10%) the reaction mixture was stirred overnight at room temperature. After filtration to remove the catalyst and evaporation of the solvent, purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 5/1) afforded 0.39 g (91%) of a colourless liquid. $-R_f = 0.1$ (petroleum ether/diethyl ether = 5/1). -ee > 96%. $-[α]_D^{20} = +9.7$ (c = 0.4, CHCl₃). - IR (film): $\tilde{v} = 3446$ (m, br, OH), 2955, 2926, 2855 (s, CH), 1734 (s, C=O), 1466 (m), 1405 (m), 1163 (m), 1056 (m) cm⁻¹. - ¹H NMR: $\delta = 0.88$ (t, J = 7.1 Hz, 3H, CH₃), 1.23-1.27 (m, 14H, CH₃(CH₂)₇), 1.39-1.48 (m, 2H, CH₂CH₂CO), 1.86-1.95 (m, 4H, CH₂CH₂CCH₂), 2.24-2.32 (m, 2H, CH₂CO), 2.39 (s, 1H, OH), 3.48 (d, J = 11.1 Hz, 1H, CHHOH), 3.63 (d, J = 11.1 Hz, 1H, CHHOH). - ¹³C NMR: $\delta = 14.13$ (CH₃), 19.22 (CH₂CH₂C=O), 22.71 (CH₃CH₂), 24.11 (CH₃CH₂CH₂), 29.34, 29.51, 29.59, 30.27, 30.62, 31.91, 32.57 (CH₂CC=O, 6CH₂), 38.91 (CH₂C=O), 53.52 (CC=O), 65.79 (CH₂OH), 224.74 (C=O). - MS (70 eV), m/z (%) = 240 (6) [M⁺], 114 (100) [C₆H₉OCH₂OH⁺], 97 (11) [C₆H₉O⁺], 83 (15) [C₆H₁₁⁺], 69 (48) [C₅H₉⁺], 55 (28) [C₄H₇⁺], 41 (26) [C₃H₅⁺]. - C₁₅H₂₈O₂ [240.4]: calcd. C: 74.95, H: 11.74; found C: 74.63, H: 11.81.

(2S,5R)-(-)-2-Hydroxymethyl-5-methyl-2-nonylcyclopentanone [(2S,5R)-2]: Ketone (S)-11 (0.38 g, 1.6 mmol) was added dropwise to a solution 2.5 equiv. LDA at -78 °C. After 2 h CH₃I (0.43 g, 3 mmol) was added at -100 °C and stirring was continued overnight while the reaction mixture was allowed to warm to room temperature. The reaction mixture was quenched with saturated aqueous NH₄Cl solution, the aqueous layer was separated, extracted twice with diethyl ether and the combined organic layers were dried over MgSO₄. After purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 2/1) the crude product was again dissolved in 2 ml THF and added dropwise to 5 equiv. of a solution of LDA at -78 °C. After 1 h the reaction mixture was hydrolysed with NH4Cl solution at -100 °C. The work-up was carried out as described above. Purification by flash chromatochraphy (silica gel, petroleum ether/diethyl ether = 3/1) afforded 0.33 g (81%) of a colourless liquid. $-R_f = 0.3$ (petroleum ether/diethyl ether = 1/1). -de > 96% (determined by ¹³C NMR). -ee > 96% (determined by comparison of optical rotation value with that of the known compound). - $[\alpha]_D^{20} = -19.3 \ (c = 0.5, \text{ CHCl}_3). - [\alpha]_D^{20} = -19.3 \ (c = 1.5, \text{ CHCl}_3).^{6c} - \text{IR (film): } \tilde{\nu} = 3449 \ (\text{m, br, OH}),$ 2957, 2927, 2871, 2855 (s, CH), 1729 (s, C=O), 1458 (m), 1375 (w), 1174 (w), 1046 (m) cm⁻¹. - ¹H NMR: δ = 0.88 (t, J = 6.7 Hz, 3H, CH₃CH₂), 1.10 (d, J = 6.7 Hz, 3H, CH₃CH), 1.23-1.28 (m, 14H, CH₃(CH₂)₇), 1.36-2.28 (m, 8H, $CH_2CH_2CH_2CH_2CH_2CH_2$, CH_2), CH_2 , OH), 3.45 (d, J = 10.7 Hz, 1H, CHHOH), 3.65 (d, J = 10.7 Hz, 1H, 1H, 1H), 3.65 (d, J = 10.7 Hz, 1H, 1H, 1H), 3.65 (d, J = 10.7 Hz, 1H, 1H), 3.65 (d, J = 10.7 Hz, 1H, 1H), 3.65 (d 10.7 Hz, 1H, CHHOH). - ¹³C NMR: δ = 14.13, 14.42 (2CH₃), 22.69 (CH₃CH₂), 24.29 (CH₃CH₂CH₂), 28.40, 29.09, 29.31, 29.49, 29.57 ($CH_2CH_2CH_2C=0$, $3CH_2$), 31.62, 31.89, 32.69 ($3CH_2$), 44.76 ($CH_2C=0$), 53.70 (CC=0), 66.42 (CH_2OH), 225.91 (C=0). – MS (70 eV); m/z (%) = 254 (1) [M⁺], 142 (7) [M⁺–C₈H₁₆], 128 (100) [C₆H₉OCH₂OH⁺], 110 (45) [C₆H₈OCH₂⁺], 97 (14) [C₆H₉O⁺], 83 (14) [C₆H₁₁⁺], 69 (51) [C₅H₉⁺], 55 (27) [C₄H₇⁺], 41 (23) [C₃H₅⁺]. – C₁₆H₃₀O₂ [254.4]: calcd. C: 75.54, H: 11.89; found C: 75.24, H: 11.80.

(2S,5R)-(-)-Malyngolide [(2S,5R)-1]: β -Hydroxyketone (2S,5R)-2 (0.28 g, 1.1 mmol) in CHCl₃ (3 ml) was treated with mCPBA (0.63 g, 2.2 mmol, 60%) and NaHCO₃ (0.18 g, 2.2 mmol) and stirring was continued for 3 d at room temperature with the exclusion of light. The reaction mixture was diluted with 20 ml CH₂Cl₂, washed with saturated aqueous NaHCO3- and NaCl solutions and dried over MgSO4. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 1/1) yielded 0.17 g (58%) of colourless crystals. – $R_f = 0.2$ (petroleum ether/diethyl ether = 1/1). - m.p. = 36 -38 °C. - de > 96% (determined by ¹³C NMR). ee > 96% (determined by comparison of optical rotation value with that of the known compound). $- \left[\alpha \right]_{0}^{20} =$ $-13.0 \ (c = 0.9, \text{ CHCl}_3). - [\alpha]_D^{20} = -12.7,^{3b} \ [\alpha]_D^{20} = -13.0,^{6c} \ [\alpha]_D^{20} = -13.2.^1 - \text{IR (KBr):} \ \tilde{\nu} = 3418 \ \text{(m, br,}$ OH), 2926, 2855 (s, CH), 1729 (s, C=O), 1462 (m), 1379 (m), 1237, 1208 (m, br), 1110, 1087 (m, br) cm⁻¹. -¹H NMR: $\delta = 0.88$ (t, J = 7.1 Hz, 3H, CH₃CH₂), 1.25-1.28 (m, 14H, CH₃(CH₂)₇), 1.28 (d, J = 6.3 Hz, 3H, CH₃CH), 1.52-2.07 (m, 6H, CH₂CH₂CHCO, CH₃(CH₂)₇CH₂), 2.44 (m, 1H, CH₃CHCO), 2.84 (s, 1H, OH), 3.47 (d, J = 11.3 Hz, 1H, CHHOH), 3.68 (d, J = 11.3 Hz, 1H, CHHOH). $- {}^{13}$ C NMR: $\delta = 14.12$ (CH₃), 17.13 (CH₃), 22.67, 23.65, 25.29, 26.32, 29.32, 29.50, 29.55, 30.08, 31.90 (CH₂CH₂CHC=O, 7CH₂), 35.56 (CHC=O), 36.73 (CCH₂), 67.70 (CH₂OH), 87.01 (CCH₂OH), 175.42 (C=O). - MS (70 eV), m/z (%) = 270 (2) [M⁺], 239 (100) [M⁺-CH₂OH], 211 (37) [M⁺-CH₂CH₂-CH₂OH], 155 (31) 144 (18) [M⁺-C₉H₁₉], 127 $(28) [C_9H_{19}^+], 109 (14) [C_8H_{13}^+], 95 (20) [C_7H_{11}^+], 81 (32) [C_6H_{9}^+], 71 (29) [C_5H_{11}^+], 55 (38) [C_4H_{7}^+], 61 (29) [C_5H_{11}^+], 6$ 43 (43) $[C_3H_7^+]$. - $C_{16}H_{30}O_3$ [270.4] calcd. C: 71.07, H: 11.18, found C: 71.10, H: 10.74.

(E.2R)-(+)-1-[2'-(Ethoxycarbonyl)cyclopentylidene]amino-2-methoxymethylpyrrolidine [(R)-4]: Ethoxycarbonylcyclopentanone 12 (1.87 g, 12 mmol) and RAMP (1.89 g, 14.5 mmol) were heated to reflux in toluene (20 ml) in the presence of pTsOH (0.15 g, 10 mol-%) and molecular sieves. After filtration, to remove the molecular sieves the reaction mixture was evaporated under reduced pressure, the residue was dissolved in diethyl ether, washed twice with saturated aqueous NaCl solution and dried over MgSO₄. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether/NEt₃ = 5/1/0.1) yielded 3.09 g (96%) of a colourless liquid. $-R_f = 0.2$ (petroleum ether/diethyl ether = 2/1). $- [\alpha]_D^{20} = + 77.9$ (c = 1.1, CHCl₃). - enhydrazine : hydrazone > 98:2. - IR (film): $\tilde{v} = 2957$, 2929, 2872 (s, CH), 1662 (s, C=O_{enhydrazine}), 1609 (s, C=C_{enhydrazine}), 1461 (m), 1364 (m), 1271 (s), 1173 (m), 1129 (m), 1049 (m) cm⁻¹. - ¹H NMR: $\delta = 1.27$ (t, J = 7.4 Hz, 3H, CH₃), 1.65-1.85 (m, 5H, CH₂CH₂CN, NCH₂CH₂CHH), 1.90-2.04 (m, 1H, NCH₂CH₂CH₄H), 2.52 (t, J = 7.4 Hz, 2H, CH₂C=CN), 2.57 (q, J = 8.7 Hz, 1H, NCHH), 2.68 (t, J = 7.7 Hz, 2H, CH₂CN), 2.73-2.82 (m, 1H, NCHH), 3.22 (dt, J = 9.1/5.4 Hz, 1H, NCH), 3.32 (dd, J = 9.4/6.0 Hz, 1H, CH₃OCHH), 3.34 (s, 3H, OCH₃), 3.43 (dd, J = 9.4/3.7 Hz, 1H, CH₃OCHH), 4.14 (q, J = 7.1 Hz, 2H, OCH₂CH₃), 7.73 (s, 1H, NH). - ¹³C NMR: $\delta = 14.76$ (CH₃CH₂O), 20.80 (NCH₂CH₂), 20.85 (CH₂CH₂CN), 25.92 (NCH₂CH₂CH₂CH₂), 29.59 (CH₂CCN), 32.79 (CH₂CN), 57.80 (NCH₂), 58.57 (CH₃CH₂O), 59.11 (CH₂OCH₃), 66.22 (NCHCH₂O), 73.81 (CH₂OCH₃), 91.65 (CC=N), 165.84 (C=N), 168.39 (COO). - MS (70 eV), *m/z* (%) = 268 (22) [M⁺], 223 (25) [M⁺-CH₂OCH₃], 177 (100) [M⁺-CH₂OCH₃-C₂H₆O], 149 (17) [M⁺-CH₂OCH₃-C₄H₉OH], 114 (4) [CH₃OCH₂C₄H₇N⁺], 108 (6) [C₈H₁₂⁺], 82 (7) [C₆H₁₀⁺], 70 (18) [C₄H₈N⁺], 55 (7) [C₄H₇⁺], 45 (9) [CH₂OCH₃⁺], 41 (12) [C₃H₅⁺]. - C₁₄H₂₄N₂O₃ [268.4] calcd. C: 62.66, H: 9.01, N: 10.44, found C: 63.06, H: 9.20, N: 10.38.

(2R, 2'R) - (-) - 1 - [2' - Ethoxycarbonyl - 2' - nonylcyclopentylidene] amino - 2 - methoxymethylpyrrolidine[(2R,2'R)-13]: β -Hydrazonoester (R)-4 (1.34 g, 5 mmol) was added dropwise to 1.5 equiv. of a solution of LDA in toluene (10 ml) at -78 °C. After stirring 30 min HMPA (0.69 g, 7.5 mmol) was added and after a further 30 min at -78 °C methyl iodide (2.13 g, 15 mmol) was added at -100 °C and stirring was continued overnight while the reaction mixture was allowed to warm to room temperature. The hydrolysis was carried out by adding saturated aqueous NH4Cl solution. The organic layer was separated, the aqueous layer twice extracted with diethyl ether and the combined organic layers were dried over MgSO4. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether/NEt₃ = 10/1/0.2) afforded 1.68 g (85%) of a pale yellow liquid. $-R_f =$ 0.3 (petroleum ether/diethyl ether = 2/1). $- \left[\alpha\right]_{D}^{20} = -157.2$ (c = 1.0, CHCl₃). - de = 63% (determined by ¹³C NMR). – ¹H NMR: $\delta = 0.88$ (t, J = 7.1 Hz, 3H, CH₃(CH₂)₈), 1.25 (t, J = 7.4 Hz, 3H, CH₃CH₂O), 1.17-1.30 (m, 16H, CH₃(CH₂)₈), 1.50-1.76 (m, 3H, NCH₂CH₂CHH, CH₂CH₂CN), 1.78-1.90 (m, 2H, NCH₂CH₂), 1.91-2.02 (m, 2H, NCH₂CH₂CH_H, CHHCH₂CH₂CN), 2.15-2.32 (m, 2H, CHHCH₂CHHCN), 2.47 (q, J = 8.4 Hz, 1H, NCHH), 2.57 (ddd, J = 18.8/7.4/4.7 Hz, 1H, CHHCN), 2.72-2.81 (m, 1H, NCHH), 3.21-3.30 (m, 10.4/7.1/3.4 Hz, 2H, OCH₂CH₃). - ¹³C NMR: δ = 14.13, 14.32 (CH₃CH₂O, CH₃CH₂CH₂), 22.29, 22.72, 22.88, 24.96 [25.05], 26.39 [26.57] (CH₂CH₂CN, CH₃CH₂CH₂, NCH₂CH₂CH₂), 29.34, 29.55, 29.60, 30.13, 30.98, 31.98, 34.12 [34.87], 36.99 (CH2CH2CH2CN, 7CH2), 53.45 [53.26] (NCH2), 56.91 [57.24] (CC=N), 59.18 (CH₂OCH₃), 60.46 [60.53] (CH₃CH₂O), 66.33 [66.30] (NCHCH₂O), 75.24 [75.51] (CH₂OCH₃), 169.04 [167.73] (C=N), 174.92 [174.34] (COO).

(2R,2'R)-(-)-1-[2'-Hydroxymethyl-2'-nonylcyclopentylidene]amino-2-methoxymethylpyrrolidine [(2R,2'R)-14]: Hydrazone (2R,2'R)-13 (1.50 g, 3.8 mmol) was added dropwise to a stirred slurry of LiAlH₄ (0.72 g, 19 mmol) in diethyl ether (50 ml) and stirring was continued for 3 h at room temperature. Hydrolysis was carried out by the addition of 15 ml 1% HCl at 0 °C. After filtration from the aluminum hydroxide precipitate, the filtrate was washed with diethyl ether and dried over MgSO₄. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 2/1) afforded 1.06 g (79%) of a pale yellow liquid. $-R_f = 0.1$ (petroleum ether/diethyl ether = 2/1). $-[\alpha]_D^{20} = -173.7$ (c = 1.0, CHCl₃). -de > 96% (determined by ¹³C NMR, 63% before chromatography). - IR (film): $\tilde{v} = 3434$ (m, br, NH), 2955, 2925, 2871, 2854 (s, CH), 1651 (w, C=N), 1461 (m), 1198 (w), 1101 (m), 1061 (m) cm⁻¹. -1H NMR: $\delta = 0.88$ (t, J = 6.7 Hz, 3H, CH₃), 1.24-1.32 (m, 16 H, CH₃(CH₂)₈), 1.40-1.76 (m, 5H, CH₂CH₂CH₂CN, NCH₂CH₂CHH), 1.76-1.90 (m, 2H, NCH₂CH₂), 1.96-2.20 (m, 1H, NCH₂CH₂CHH), 2.26 (q, J = 8.7 Hz, 1H, CHHCN), 2.47 (q, J = 8.7 Hz, 1H, NCHH), 2.52-2.62 (m, 1H, CHHCN), 3.20-3.32 (m, 1H, NCHH), 3.33 (s, 3H, OCH₃), 3.33-3.54 (m, 4H, NCH, CH₃OCH₂, CHHOH), 3.61 (d, J = 10.8 Hz, 1H, CHHOH), 4.20 (s, 1H, OH). – ¹³C NMR: $\delta = 14.10$ (CH₃), 21.74, 22.12, 22.69 (CH₂CH₂CN, CH₃CH₂, NCH₂CH₂), 24.28 (CH₃CH₂CH₂), 26.30 (NCH₂CH₂CH₂CH₂), 29.33, 29.62, 30.33, 31.21, 31.92, 32.24, 35.51 (CH₂CH₂CH₂CN, 6CH₂), 49.06 (CC=N), 54.06 (NCH₂), 59.05 (CH₂OCH₃), 66.07 (NCHCH₂O), 66.78 (CH₂OH), 76.38 (CH₂OCH₃), 175.08 (C=N). – MS (70 eV), m/z (%) = 352 (6) [M⁺], 307 (100) [M⁺–CH₂OCH₃], 208 (9), 163 (5), 114 (5) [CH₃OCH₂C₄H₇N⁺], 96 (4) [C₇H₁₂⁺], 83 (4) [C₆H₁₁⁺], 70 (45) [C₄H₈N⁺], 55 (9) [C₄H₇⁺], 41 (10) [C₃H₅⁺]. – C₂₁H₄₀N₂O₂ [352.6] calcd. C: 71.54, H: 11.55, N: 7.95, found C: 71.67, H: 11.62, N: 8.31.

(2R,2'R,5'S)-(-)-1-[2'-Hydroxymethyl-5'-methyl-2'-nonylcyclopentylidene] a mino-2-methoxymethyl pyrrolidine a mino-2-methoxyme[(2R,2'R,5'S)-15]: Hydrazone (2R,2'R)-14 (0.88 g, 2 mmol) was added dropwise to 2.8 equiv. of a solution of LDA at -78 °C. After 4 h at -78 °C, methyl iodide (1.07 g, 7.5 mmol) was added at -100 °C and stirring was continued overnight, while the reaction mixture was allowed to warm up to room temperature. The reaction mixture was quenched with NaCl solution, the organic layer was separated, washed with water and dried over MgSO₄. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 3/1) yielded 0.62 g (68%) of a pale yellow liquid. $-R_f = 0.6$ (petroleum ether/diethyl ether = 1/1). -de > 96% (determined by ¹³C NMR). $- [\alpha]_{D}^{20} = -130.0 \ (c = 1.0, \text{CHCl}_{3}). - \text{IR} \ (\text{film}): \ \tilde{\nu} = 3424 \ (\text{m}, \text{OH}), \ 2929, \ 2870, \ 2854 \ (\text{s}, \text{CH}), \ 1655 \ (\text{m}, \text{OH}), \ 1655 \ (\text{m}, \text{OH}),$ (w, C=N), 1460 (m), 1119 (m), 1100 (m), 1060 (m) cm⁻¹. -1 H NMR: $\delta = 0.88$ (t, J = 6.7 Hz, 3H, CH₃CH₂), 1.15 (d, J = 7.4 Hz, 3H, CH₃CH), 1.24-1.29 (m, 16H, CH₃(CH₂)₈), 1.36-1.64 (m, 5H, CH₂CH₂CHCN, NCH₂CH₂CH_H), 1.78-2.02 (m, 3H, NCH₂CH₂CH_H), 2.43 (q, J = 8.4 Hz, 1H, NCHH), 2.78 (quint, J = 7.4 Hz, 1H, CH₂CHCN), 3.21 (dt, J = 8.7/5.7 Hz, 1H, NCHH), 3.30 (s, 3H, OCH₃), 3.25-3.52 (m, 4H, NCH, CH₃OCH₂, CHHOH), 3.62 (d, J = 10.4 Hz, 1H, CHHOH), 4.21 (s, 1H, OH). $- {}^{13}$ C NMR: $\delta = 14.14, 15.40$ (2CH₃), 22.27, 22.74 (CH₃CH₂, NCH₂CH₂), 24.50 (CH₃CH₂CH₂), 26.49 (NCH₂CH₂CH₂), 29.39, 29.50, 29.68, 30.44, 30.65, 31.98 (CH2CH2CHCN, 5CH2), 36.17 (CCH2), 37.08 (CHCN), 50.88 (CC=N), 53.82 (NCH₂), 58.94 (CH₂OCH₃), 66.01 (NCHCH₂O), 68.20 (CH₂OH), 76.71 (CH₂OCH₃), 179.44 (C=N). - MS (70 eV), m/z (%) = 366 (7) [M+], 321 (76) [M+-CH₂OCH₃], 291 (4) [M+-CH₂OCH₃-CH₂O], 222 (10) $CH_2O-CH_3OCH_2C_4H_7N$], 177 (6) $[C_{11}H_{17}N_2^+]$, 114 (8) $[CH_3OCH_2C_4H_7N^+]$, 95 (4) $[C_7H_{11}^+]$, 81 (7) $[C_{6}H_{9}^{+}]$, 70 (100) $[C_{4}H_{8}N^{+}]$, 55 (16) $[C_{4}H_{7}^{+}]$, 41 (14) $[C_{3}H_{5}^{+}]$. – $C_{22}H_{42}N_{2}O_{2}$ [366.6] calcd. C: 72.08, H: 11.55, N: 7.64, found C: 72.11, H: 11.65, N: 8.05.

(2S,5S)-(+)-2-Hydroxymethyl-5-methyl-2-nonylcyclopentanone [(2S,5S)-2]: Ozone was passed through a solution of hydrazone (2R,2'R,5'S)-15 (0.55 g, 1.5 mmol) in pentane for 3 min at -78 °C. After evaporation of the solvent purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 3/1) afforded 0.35 g (92%) of a colourless liquid. - $R_f = 0.3$ (petroleum ether/diethyl ether = 1/1). - de > 96% (determined by ¹³C NMR). - $[\alpha]_D^{20} = + 35.5$ (c = 0.3, CHCl₃). - ¹H NMR: $\delta = 0.88$ (t, J = 6.7 Hz, 3H, CH₃CH₂), 1.09 (d,

 $J = 6.4 \text{ Hz}, 3H, CH_3CH), 1.22-1.28 \text{ (m, 14H, CH}_3(CH_2)_7), 1.42-2.32 \text{ (m, 7H, CH}_3(CH_2)_7CH_2, CH_2CH_2CHCO), 2.33-2.44 \text{ (s, 1H, OH)}, 3.47 \text{ (d, } J = 10.8 \text{ Hz}, 1H, CHHOH), 3.58 \text{ (d, } J = 10.8 \text{ Hz}, 1H, CHHOH). - ^{13}C \text{ NMR: } \delta = 14.04, 14.12 (2CH_3), 22.69 (CH_3CH_2), 24.14 (CH_3CH_2CH_2), 28.54, 29.11, 29.32, 29.51, 29.57, 30.19 (CH_2CH_2CHC=O, 6CH_2), 31.89, 33.62 (2CH_2), 44.71 (CHC=O), 53.28 (CC=O), 66.15 (CH_2OH), 225.79 (C=O). - The further analytical data are identical to (2S,5R)-2.$

(25,55)-(+)-epi-malyngolide [(25,55)-1]: β -Hydroxyketone (25,55)-2 (0.25 g, 1.0 mmol) in CHCl₃ (3 ml) was treated with *m*CPBA (0.57 g, 2.0 mmol, 60%) and NaHCO₃ (0.18 g, 2.0 mmol) and stirring was continued for 3 days at room temperature with the exclusion of light. The reaction mixture was diluted with 20 ml CH₂Cl₂, the organic layer was washed with saturated aqueous NaHCO₃- and NaCl solutions and dried over MgSO₄. Purification by flash chromatography (silica gel, petroleum ether/diethyl ether = 1/1) afforded 0.15 g (56%) of a colourless liquid. – $R_f = 0.2$ (petroleum ether/diethyl ether = 1/1). – de > 96% (determined by ¹³C NMR). – ee > 96% (determined by comparison of optical rotation value with that of the known compound). – $[\alpha]_D^{20} = + 19.1 (c = 0.3, CHCl_3)$. – $[\alpha]_D^{20} = + 19.1.3^a [\alpha]_D^{20} = + 19.5.6^{\rm g} - ^{\rm 1H}$ NMR: $\delta = 0.88$ (t, J = 6.4 Hz, 3H, CH_3CH_2), 1.22-1.27 (m, 14 H, $CH_3(CH_2)_7$), 1.28 (d, J = 7.1 Hz, 3H, CH_3CH), 1.61-2.00 (m, 6H, $CH_3(CH_2)_7CH_2$, CH_2CHCO), 2.38-2.50 (m, 2H, CH_3CH , OH), 3.60 (s, 2H, CH_2OH). – ^{13}C NMR: $\delta = 14.11$ (CH₃), 17.23 (CH₃), 22.67, 23.21, 25.45, 27.12, 29.29, 29.52, 29.96, 31.86 ($CH_2CH_2CHC=O$, 7CH₂), 35.21 (CHC=O), 37.54 (CCH_2), 67.70 (CH_2OH), 86.36 (CCH_2OH), 175.33 (C=O). – The further analytical data are identical to (25,5R)-1.

Acknowledgement: This work was supported by the Deutsche Forschungsgesellschaft (Leibniz-Prize) and by the Fonds der Chemischen Industrie. We thank Degussa AG, BASF AG, Bayer AG and Hoechst AG for donations of chemicals.

REFERENCES AND NOTES

- 1. Cardillina II, J.H.; Moore, R.E; Arnold, E.V.; Clardy, J.; J. Org. Chem. 1979, 44, 4039-3042.
- a) Ziegler, T.; Eckhardt, E.; Bitauldt, V.; J. Org. Chem. 1993, 58, 1090-1099; b) Ziegler, T.; Eckhardt, E.; Tetrahedron Lett. 1992, 33, 6615-6618.
- a) Mukaiyama, T.; *Tetrahedron* 1981, 37, 4111-4119; b) Sakito, Y.; Tanabe, S.; Asami, M.; Mukaiyama, T.; *Chem. Lett.* 1980, 10, 1223-1226.
- 4. a) Ley, S.V.; Pure Appl. Chem. 1994, 66, 1415-1422; b) Wuts, P.G.; Cheng, M.C.; J. Org. Chem. 1986, 51, 2844-2847; c) Horten, A.M.; Ley, S.V.; J. Organomet. Chem. 1985, 285 (C17-C20); d) Hagiwara, H.; Uda, H.; J. Chem. Soc., Perkin Trans I 1985, 1157-1159; e) Kim, S.; Hong, C.Y.; J. Org. Chem. 1982, 47, 4530-4351; f) Matsuo, K.; Kinuta, T.; Tanaka, K.; Chem. Pharm. Bull. 1981, 29, 3047-3050; g) Matsuo, K.; Tanaka, K.; Chem. Pharm. Bull. 1981, 29, 3070-3072; h) Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S.; J. Org. Chem. 1981, 46, 24392442; i) Torii, S.; Inokuchi, T.;

Yoritaka, K.; J. Org. Chem. 1981, 46, 5030-5031; j) Babler, J.H.; Invergo, B.J.; Sarussi, S.J.; J. Org. Chem. 1980, 45, 4241-4243.

- a) Ohira, S.; Moritori, M.; Ida, T.; Yamato, M.; J. Chem. Soc., Chem. Commun. 1993, 1299-1300;
 b) Nagano, H.; Ohno, M.; Miyamae, Y.; Bull. Chem. Soc. Jpn. 1992, 65, 2814-2820; c) Matsuo, K.; Hasuike, Y.; Kado, H.; Chem. Pharm. Bull. 1990, 38, 2847-2849; d) Honda, T.; Imai, M.; Keino, K.; Tsubuki, M.; J. Chem. Soc., Perkin Trans I 1990, 2677-2680; e) Ichimoto, I.; Machiya, K.; Kirihata, M.; Ueda, H.; Agric. Biol. Chem. 1990, 54, 657-662; f) Trinh, M.C.; Florent, J.C.; Monneret, C.; Tetrahedron 1988, 44, 6633-6644; g) Tokunaga, Y.; Nagano, H.; Shiota, M.; J. Chem. Soc. Perkin Trans I 1986, 581-584; h) Ho, P.T.; Wong, S.; Can. J. Chem. 1985, 63, 2221-2224; i) Pougny, J.R.; Rollin, P.; Sinay, P.; Tetrahedron Lett. 1982, 23, 4929-4932.
- a) Schaumann, E.; Flörke, H.; Liebigs Ann. 1996, 147-151; b) Guingant, A.; Tedrahedron: Asymmetry 1991, 2, 415-418; c) Asaoka, M.; Hayashibe, S.; Sonoda, S.; Takei, H.; Tetrahedron 1991, 47, 6967-6974; d) Asaoka, M. Takenouchi, K.; Takei, H.; Tetrahedron Lett. 1988, 29, 325-328; e) Sato, T.; Maeuo, H.; Noro, T.; Fujisawa, T.; Chem. Lett. 1988, 1739-1742; f) Suemune, H.; Harabe, T.; Xie, Z.-F.; Saki, K.; Chem. Pharm. Bull. 1988, 36, 4337-4344; g) Giese, B.; Rupaner, R.; Liebigs Ann. Chem. 1987, 231-233; h) Kogure, T.; Eliel, E.L.; J. Org. Chem. 1984, 49, 576-578.
- Enders, D.; Knopp, M.; Runsink, J.; Raabe, G.; Angew. Chem. 1995, 107, 2442-2445; Angew. Chem. Int. Ed. Engl. 1995, 34, 2278-2280.
- Enders, D.; Zamponi, A.; Schäfer, T.; Nübling, C.; Eichenauer, H.; Demir, A.S.; Raabe, G.; Chem. Ber. 1994, 127, 1707-1721.
- Enders, D.; Bachstädter, G.; Kremer, K.A.M.; Marsch, M.; Harms, K.; Boche, G.; Angew. Chem. 1988, 100, 1580-1581; Angew. Chem. Int. Ed. Engl. 1988, 27, 1522-1523.
- a) Dale, J.A.; Mosher, H.S.; J. Am. Chem. Soc. 1973, 95, 512-519; b) Trost, B.M.; Mc Dougel, P.G.; Tetrahedron Lett. 1982, 23, 5497-5500; c) Trost, B.M.; J. Am. Chem. Soc. 1986, 108, 4974-4983; d) Roy, B.L.; Delongchamps, P.; Can. J. Chem. 1985, 63, 651-654.
- 11. Corey, E.J.; Venkateswarlu, A.; J. Am. Chem. Soc. 1972, 94, 6190-6191.
- 12. Pappo, R.; Allen, D.S.; Lemieux, R.U.; Johnson, W.S.; J. Org. Chem. 1956, 21, 478-479.
- 13. Krow, G.R.; in Organic Reactions, Vol. 43, (Hrsg. L.A. Paquette), Wiley, Philadelphia, 1993.
- 14. Ando, A.; Takemasa, Y.; Tomioka, K.; Koga, K.; Tetrahedron 1993, 49, 1579-1588.

(Received in Germany 6 February 1996; accepted 26 February 1996)