Chem. Pharm. Bull. 35(8)3155—3165(1987)

Chemical Transformation of Protoberberines. XIV.¹⁾ Acid-Catalyzed Cleavage of 8-Alkyl-8,14-cycloberbines. A Simple Method for the Preparation of N-Unsubstituted Spirobenzylisoquinolines²⁾

Miyoji Hanaoka, *.^{*a*} Sin Kyu Kim, ^{*b*} Shun-ichiro Sakurai, ^{*a*} Yuko Sato, ^{*a*} and Chisato Mukai ^{*a*}

Faculty of Pharmaceutical Sciences, Kanazawa University,^a Takara-machi, Kanazawa 920, Japan and College of Pharmacy, Kyung Hee University,^b 1-Hoigi-dong, Dongdaemoon-Gu, Seoul 131, Korea

(Received February 4, 1987)

On treatment with an acid, 8-alkyl-8,14-cycloberbines (9) afforded the N-unsubstituted spirobenzylisoquinolines (10, 11, and 12) through regioselective C_8 -N bond cleavage in contrast to the 8-unsubstituted 8,14-cycloberbine (9d), which gave the benzindenoazepine (19, R=H) through regioselective C_{14} -N bond cleavage. Reduction of 9 with NaBH₄ or LiAlH(OBu')₃ yielded stereoselectively the alcohol (20 or 21, respectively) as the main product. Acidic treatment of the isomeric alcohols (20 and 21) effected regioselective C_8 -N bond cleavage, resulting in the N-unsubstituted spirobenzylisoquinolines (22-26).

Keywords—8-alkyl-8,14-cycloberbine; spirobenzylisoquinoline; regioselective C–N bond cleavage; stereoselective reduction; hydrochloric acid; trifluoroacetic acid; lithium aluminum tri*tert*-butoxyhydride; sodium borohydride; oxazolidinone; oxazolidine

Berberinephenolbetaines (2), derived from protoberberines (1) by successive lithium aluminum hydride reduction and oxidation with *m*-chloroperbenzoic acid, are susceptable to photo-induced valence isomerization to produce the unique 8,14-cycloberbines (3),³⁾ which were shown to be key intermediates in the formation of related alkaloids from 1. For example, the spirobenzylisoquinolines (4 and 5) were obtained from 3 (R=H) and the 8-alkyl congeners (3, R=alkyl), respectively, through a regioselective C_8 -N bond cleavage with ethyl chloroformate. This reaction has been successfully applied to a stereoselective synthesis of (±)-fumaricine (6).⁴⁾ On the other hand, 3 (R=H) underwent a regioselective C_{14} -N bond fission⁵⁻⁷⁾ to yield the benzindenoazepines (7) on exposure to acid. Benzindenoazepine and rhoeadine alkaloids such as *cis*-alpinigenine (8)⁷⁾ have been synthesized from 1 according to this method. Thus, it seemed to be of great interest to check whether acid treatment of 3 (R=alkyl) effects either C_8 -N or C_{14} -N bond fission leading to spirobenzylisoquinolines or benzindenoazepines, respectively. This paper describes a simple method for the synthesis of *N*-unsubstituted spirobenzylisoquinolines.

The 8-methyl-8,14-cycloberbine $(9a)^{3}$ was heated in 10% hydrochloric acid at 70—80 °C (method I) for 2 h to furnish the 8-hydroxyspirobenzylisoquinoline (10a) accompanied with the unsaturated spirobenzylisoquinoline (12a) in 74 and 21% yields, respectively, through a C₈–N bond cleavage. The corresponding benzindenoazepine derived through a C₁₄–N bond fission could not be detected. Similar treatment of the 8-ethyl- and 8-allyl-8,14-cycloberbine (9b and 9c)³ also gave the 8-hydroxyspirobenzylisoquinolines (10b, 80% and 10c, 56%) along with the unsaturated spirobenzylisoquinolines (12b, 17% and 12c, 33%), respectively (Table I).

Table I.	Solvolysis	of 8,14-Cyc	loberbines	(9))
----------	------------	-------------	------------	-----	---

Const	D		Pr	%)	
Compa.	ĸ	Method	10 11		
9a	Me	I	74		21
9a	Me	II		76	
9b	Et	Ι	80		17
9b	Et	II		83	12
9c	Allyl	Ι	56		33
9c	Allyl	II		56	31

a) I, 10% HCl; II, CF₃CO₂H-MeOH.

The spirobenzylisoquinoline structures of these products were apparent from spectral data. The salient feature in the proton nuclear magnetic resonance (¹H-NMR) spectra of **10** and **12** is the H-1 signals, which appeared at relatively high field (5.94—6.21 ppm), characteristic of a spirobenzylisoquinoline skeleton.⁸⁾ In order to establish the stereochemistry of **10**, the methyl derivative (**10a**) was treated with ethyl chloroformate⁴⁾ or formaldehyde^{9,10)} resulting in the oxazolidinone (**13**, 63%) or the oxazolidine (**14**, 85%), respectively. Their structures were assigned from the spectral data, especially a characteristic band at 1740 cm⁻¹ in the infrared (IR) spectrum of **13** and an AB quartet at 4.56 and 4.13 ppm due to the methylene of the oxazolidine ring in the ¹H-NMR spectrum of **14**. The *cis* relationship between C₁₄–N and the hydroxy group in **10a** was thus chemically determined. The *Z*-configuration of **12b** and **12c** was confirmed by the following features in the ¹H-NMR spectra. The *exo*-olefinic protons of **12b** and **12c** resonated at 7.04 and 7.41 ppm, respectively, and the downfield shift may be attributed to the deshielding effect of the benzene ring (ring D) as well as steric repulsion between the olefinic proton and the methoxy group at the C-9 position. This stereochemistry is well supported by the fact that the chemical shifts of the olefinic

When the cycloberbines (9a, b, and c) were stirred in methanol in the presence of a catalytic amount of trifluoroacetic acid at room temperature (method II) for 3.5 h, the 8-methoxyspirobenzylisoquinolines (11a, b, and c) were obtained in 76, 83, and 56% yields, respectively, together with the unsaturated spirobenzylisoquinolines (12a, b, and c) in 0, 12, and 31% yields, respectively. Upon treatment with *p*-toluenesulfonic acid instead of trifluoroacetic acid, 9b similarly afforded 11b and 12b in 75 and 6% yields, respectively. The stereochemistry of 10b, 10c, and 11 is probably the same as that of 10a, assuming an analogous attack of the solvent from the less-hindered side.

protons of 12b and 12c are similar to that of 15 (7.09 ppm) rather than that of 16 (5.91 ppm),

both of which have established stereochemistry.³⁾

Thus, it appeared that acid treatment of the 8-alkyl-8,14-cycloberbines (9) effected exclusively C_8 -N bond fission leading to the spirobenzylisoquinolines, and these results are contrary to that in the case of 8-unsubstituted 8,14-cycloberbine (9d), which gave the benzindenoazepine (19, R = H)⁵⁻⁷ through a C_{14} -N bond cleavage. The introduction of an alkyl group at the C-8 position was found to alter dramatically the regioselectivity in C-N bond cleavage of the aziridine ring.

The above intriguing observation can presumably be interpreted as follows. An S_N 1-type cleavage of the aziridine ring with acid produces the carbocation (17 or 18). The former cation, leading to the spirobenzylisoquinolines, might be more stable than the latter, leading to the benzindenoazepines, because the latter has a carbonyl group adjacent to the cation.

Consequently the reaction proceeded via the more stable carbocation (17) to the spirobenzylisoquinolines. In the case of the 8-unsubstituted 8,14-cycloberbine (9d), however, reaction would proceed via the tertiary carbocation (18, R = H) rather than the secondary carbocation (17, R = H). If this explanation is correct, the carbonyl group adjacent to the carbocation plays a crucial role in determining the reaction pathway. Therefore we next investigated the solvolysis of the 13-hydroxy-8,14-cycloberbines (20 and 21).

A solution of 9 in methanol was reduced with sodium borohydride $(NaBH_4)^{4}$ at room temperature to afford predominantly the alcohol (20) accompanied with the diastereoisomeric alcohol (21), whereas the latter was obtained as the main product when the reduction was carried out with lithium aluminum tri-*tert*-butoxyhydride [LiAlH(OBu^t)₃]¹¹ in tetrahydro-

TABLE II. Reduction of 8,14-Cycloberbines (9)

Compd. R		Product (20)		Product (21)		Product	Chemical shift	
	R	Reagent"	Yield (%)	H-13 ^{b)}	Yield (%)	H-13 ^{b)}	ratio (20/21)	difference ^{c)}
9a	Me	А	71	5.21	13	4.77	5.5/1.0	0.44
9a	Me	В	14		77		1.0/5.5	
9b	Et	Α	88	5.22	9	4.74	9.5/1.0	0.48
9b	Et	В	12		88		1.0/7.5	
9c	Allyl	Α	80	5.20	12	4.68	6.5/1.0	0.52
9c	Allyl	В	13		85		1.0/6.5	

a) A, NaBH₄; B, LiAlH(OBu')₃. b) Chemical shift δ (ppm). c) $\Delta \delta$ (20-21).

furan (THF) at refluxing temperature. The results are summarized in Table II. The stereochemical relationship between the hydroxy group and the C_{14} -N bond in 20 and 21 was clarified from the ¹H-NMR spectral data. The C-13 proton signal of 20 appeared at lower field than that of 21, in the range of 0.44—0.52 ppm, and the downfield shift may be ascribed to the deshielding effect of the benzene ring (ring A). Examination of a molecular model indicated that the C-13 proton of 20, *cis* to ring A, lies on nearly the same plane as ring A and is strongly deshielded, whereas such a deshielding effect does not occur in 21. Accordingly the relative stereochemistry of the C_{13} -OH and C_{14} -N bond in 20 is *cis* and that in 21, *trans*.

The reverse stereoselectivity depending on the reducing agent used can be plausibly rationalized in terms of both steric hindrance and the reactivity of the reagents. In contrast to the case of NaBH₄ reduction, in which the hydride attacks the carbonyl group from the sterically less hindered side, producing the alcohol (**20**), less reactive LiAlH(OBu^t)₃, that does not react at all at room temperature, predominantly forms at first a complex with the nitrogen of the aziridine ring and then this complex reduces the carbonyl group intramolecularly from the same side as the nitrogen to provide the alcohol (**21**).

Acid cleavage of the 13-hydroxy-8,14-cycloberbines (20 and 21) was next investigated. The alcohols (20 and 21) were treated with 10% hydrochloric acid (method I) or trifluoroacetic acid in methanol (method II) as described for the reaction of the ketones (9) to afford exclusively the spirobenzylisoquinolines (22–26). The structures of these products were elucidated from spectral evidence, and the yields are summarized in Table III. Exclusive formation of spirobenzylisoquinolines in these reactions can be interpreted in terms of the intermediacy of the tertiary carbocation (27) which might still be more stable than the tertiary carbocation (28) destabilized by the inductive effect of the vicinal polar hydroxy group.

On treatment with ethyl chloroformate, 8-methoxyspirobenzylisoquinolines (23), derived from 20, gave the oxazolidinones (29), which exhibited characteristic bands at $1730-1740 \text{ cm}^{-1}$ in their IR spectra. On the other hand, the carbamates (30) were obtained on exposure of 25, derived from 21, to ethyl chloroformate. The carbamates (30) showed absorptions at $1670-1680 \text{ cm}^{-1}$ in their IR spectra. These results confirmed unambiguously the aforementioned stereochemistry of the *cis*- and *trans*-alcohols (20 and 21). Treatment of 22a with formaldehyde afforded the oxazolidine (31), which was identical with the product obtained from the reaction of 20a with formaldehyde.¹²⁾ The formation of 31 established the

Compd.	D		Product (yield, %)					
	ĸ	Method"	22	23	24	25	26	
20a	Me	I	45		36			
20a	Me	II		71				
20b	Et	Ι	25		54			
20b	Et	II		83				
20c	Allyl	I	49		22			
20c	Allyl	II		60	16			
21a	Me	I					79	
21a	Me	II				70		
21b	Et	I					70	
21b	Et	II				68		
21c	Allyl	Ι					74	
21c	Allyl	II				64		

TABLE III. Solvolysis of 13-Hydroxy-8,14-cycloberbines (20 and 21)

a) I, 10% HCl; II, CF₃CO₂H-MeOH.

			Analysis		
	mn (°C)		Calcd (Found)	IR (cm^{-1})	
Compd.	$(\text{Solvent})^{a}$	Formula	Calca (1 oulia)	- (CHCl)	MS m/z (%)
	(Solvent)		СНИ	(CIICI3)	
	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
100	173 174		65 78 5 57 3 65	2200 1700 ⁽⁾	$282 (M^+ 100) 265 (44) 250 (37)$
10a	(P U)	$C_{21}\Pi_{21}\Pi_{06}$	(65.01 5.64 2.65)	5500, 1700	176(62)
106	(D-II) 163 164	CHNO	(03.91 5.04 5.05)	3200 1700	170(02) 207 (M ⁺ 100) 270(45) 264(47)
100	(P U)	$C_{22}\Pi_{23}\Pi_{06}$	(66.61 5.77 3.46)	5500, 1700	176 (65)
10.	(D-II)	C U NO	$(00.01 \ 5.77 \ 5.40)$	2450 2200	170(03) $400(M^+, 72) = 201(28) = 268(100)$
IUC	15/-159	$C_{23}H_{23}NO_6$	$0/.40 \ 3.00 \ 3.42$	3450, 3300,	409 (M, 72), 391 (38), 308 (100),
11-	(1)	C U NO	$(0/.00 \ 5.09 \ 5.70)$	1703	1/0(53) 207 (M ⁺ 100) 2(((72) 2(4(20))
11a	190—191	$C_{22}H_{23}NO_{6}$	66.49 5.83 3.52	3350, 1710	397 (M ⁻¹ , 100), 366 (73), 364 (30),
	(M)	G 11 NG	(66.23 5.84 3.47)	2 (00 1 2000)	1/4 (16)
115	143—144	$C_{23}H_{25}NO_{6}$	67.14 6.12 3.40	3400, 1700°	411 (M ⁺ , 100), 380 (68), 378 (48)
	(M)	a	(66.91 5.92 3.51)		
11c	Amorphous	$C_{24}H_{25}NO_{6}$	423.1680°	1710, 1640	423 (M ⁺ , 100), 392 (38), 382 (87),
			(423.1680)		367 (57), 352 (3)
12a	152—153	$C_{21}H_{19}NO_5$	69.03 5.24 3.83	3400, 1710	365 (M ⁺ , 100), 336 (23), 320 (31),
	(B -H)		(69.20 5.23 3.83)	· .	306 (48), 290 (19), 149 (19)
12b	217—218	$C_{22}H_{21}NO_5$	69.64 5.58 3.69	3350, 1680°)	379 (M ⁺ , 100), 364 (45), 350 (59),
	(B -H)		(69.90 5.59 3.77)		320 (43)
12c	213—214	$C_{23}H_{21}NO_5$	70.57 5.41 3.58	1700, 1630	391 (M ⁺ , 100), 362 (50), 332 (22)
	(M)		(70.42 5.43 3.56)		
20a	189—190	$C_{21}H_{21}NO_5$	68.65 5.76 3.81	3550	367 (M ⁺ , 47), 350 (45), 338 (21),
	(M)		(68.46 5.78 3.77)		308 (100)
20b	197—198	$C_{22}H_{23}NO_5$	69.27 6.08 3.67	3300 ^{c)}	381 (M ⁺ , 1.9), 364 (100), 334 (35),
	(B –H)		(69.24 6.01 3.88)		320 (5.7)
20c	181-182.5	$C_{23}H_{23}NO_5$	70.21 5.89 3.56	3400, 1640	393 (M ⁺ , 3.4), 376 (100), 360 (9.4),
	(B -H)		(70.11 5.88 3.63)		346 (21), 330 (5.7)
21a	186—187	$C_{21}H_{21}NO_5$	68.65 5.76 3.81	3550	$368 (M^+ + 1, 58),^{d} 350 (100)$
	(I)		(68.67 5.84 3.83)		
21b	167—168	$C_{22}H_{23}NO_5$	69.27 6.08 3.67	3600	381 (M ⁺ , 2.3), 364 (100), 334 (21)
	(B-H)		(69.23 6.08 3.57)		
21c	197—198	$C_{23}H_{23}NO_5$	70.21 5.89 3.56	3500, 3350,	393 (M ⁺ , 3.9), 376 (100), 360 (8.5),
	(EA-H)		(70.34 5.92 3.77)	1640	346 (21), 344 (5.4), 330 (5.3)
22a	181.5-182.5	$C_{21}H_{23}NO_{6}$	65.44 6.02 3.63	3550, 3300	385 (M ⁺ , 1.5), 367 (100), 352 (64),
	(B–H)		(65.52 6.02 3.64)		338 (16), 308 (57)
22b	156	$C_{22}H_{25}NO_{6}$	66.15 6.31 3.51	3350	399 (M ⁺ , 39), 381 (82), 176 (100)
	(M)		(65.94 6.30 3.56)		· · · · · · ·
22c	173.5-175	C ₂₃ H ₂₅ NO ₆	67.14 6.12 3.40	3550, 3350,	411 (M ⁺ , 6.9), 393 (99), 364 (35),
	(M)	20 20 0	(67.27 6.09 3.51)	1630	352 (97), 189 (99), 176 (100)
23a	139-141	C ₂₂ H ₂₅ NO ₆	66.15 6.31 3.51	3300	399 (M ⁺ , 15), 367 (50), 352 (42),
	(I)	22 23 0	(65.85 6.17 3.39)		338 (20), 308 (100), 176 (19)
23b	83-85	$C_{23}H_{27}NO_6$	64.70 7.01 3.14	3500, 3400 ^{c)}	413 (M ⁺ , 14), 381 (84), 364 (24), 352
	(M)	MeOH	(64.64 7.01 3.39)		(100), 322 (93), 189 (18), 176 (37)
23c	62—64	C ₁₄ H ₁₇ NO ₆	65.72 6.83 3.06	3350, 1640	425 (M ⁺ , 15), 393 (35), 364 (18), 352
	(M)	MeOH	(66.05 6.84 3.09)	,	(100), 334 (16), 189 (51), 176 (35)
24a	192-194	C ₂ , H ₂ , NO ₆	68.65 5.76 3.81	3300, 1635 ^{c)}	$367 (M^+, 38), 338 (20), 308 (100)$
-,	(A)	02111211105	(68 54 5 82 3 96)	5500, 1055	507 (111 , 50), 550 (20), 500 (100)
24b	142-144	C. H. NO.	66 15 6 31 3 51	3350	$381 (M^+ 100) 366 (40) 321 (68)$
	(A)	H.O	(66 28 6 36 3 55)	5550	561 (111 , 100), 566 (10), 521 (00)
240	186 5-188	C.H. NO.	68 73 6 15 3 42	3350 1620	$393 (M^+ 100) 364 (30) 352 (50)$
-	(M_{F})	1/2 MeOH	(68 46 5 97 3 28)	5550, 1020	334 (23) 189 (98) 176 (23)
250	144 5-145 5		64 32 6 34 3 26	3550 3300	$399 (M^+ 13) 367 (47) 357 (41) 328$
_Ja	(I)	H O	(64.61.6.10.3.50)	5550, 5500	(21) 308 (100) 176 (18)
25h	139_140		66.81.6.58.2.20	3550 2250	(21), 500 (100), 170 (10) A13 (M ⁺ 13) 381 (70) 264 (15) 252
230	(I)	C ₂₃ 11 ₂₇ 110 ₆	(66 77 6 57 2 70)	5550, 5550	(06) 322 (100) 180 (19) 176 (40)
	(1)		(00.77 0.52 5.28)		(30), 322 (100), 103 (10), 170 (40)

TABLE IV. (continued)								
Compd.	mp (°C)	Formula	Analysis Calcd (Found)	$IR (cm^{-1})$	MS m/z (%)			
	(Solvent)		C H N	(CHCl ₃)				
25c	143.5—145 (M I)	$C_{24}H_{27}NO_{6}$	67.75 6.40 3.29	3550, 3350,	425 (M ⁺ , 11), 393 (79), 352 (100), 176 (20)			
26a	Amorphous	$\mathrm{C}_{21}\mathrm{H}_{21}\mathrm{NO}_{5}$	$(07.47 \ 0.51 \ 5.29)$ 367.1418 ^{b)} (367.1423)	3550, 3300,	$367 (M^+, 49), 338 (21), 308 (100)$			
26b	98—100 (A)	$C_{22}H_{23}NO_5$	(307.1423) 381.1574^{b} (381.1600)	3550	381 (M ⁺ , 100), 364 (45), 322 (76), 189 (26), 176 (25)			
26c	97—99 (M)	C ₂₃ H ₂₃ NO ₅	70.21 5.89 3.56 (70.09 5.75 3.69)	3550, 3300, 1625	393 (M ⁺ , 2.6), 376 (100), 346 (68)			

a) A, ethanol; B, benzene; E, ethyl ether; EA, ethyl acetate; H, hexane; I, isopropyl ether; M, methanol. b) High-resolution MS. c) KBr. d) Chemical ionization MS.

cis relationship between C_{14} -N and the hydroxy group at C-8 in **22a** and suggested the same stereochemistry at C-8 of the other products (**22**, **23**, and **25**), as depicted.

Thus, we have found that the 8-alkyl-8,14-cycloberbines (9) and their 13-hydroxy derivatives (20 and 21) undergo exclusive C_8 -N bond cleavage on acid treatment to give the N-unsubstituted spirobenzylisoquinolines, which could be led to various modified derivatives by further elaboration. In combination with an easy preparation of the cycloberbines, this simple transformation reaction provides an efficient method for the synthesis of N-unsubstituted spirobenzylisoquinolines possessing substituents at C-8 and C-13 on the five-membered ring from protoberberines.

Experimental

Melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Alumina (Aluminiumoxid 90, Aktivitätsstufe II—III, 70—230 mesh, Merck) and silica gel (Kieselgel 60, 70—230 mesh, Merck) were used for column chromatography. Organic extracts were dried over anhydrous Na_2SO_4 . IR spectra were measured with a JASCO A-102 spectrometer in CHCl₃ unless otherwise stated, mass spectrum (MS) with a Hitachi M-80 mass spectrometer, and ¹H-NMR spectra with a JEOL FX-100 spectrometer in CDCl₃ using tetramethylsilane as an internal standard unless otherwise stated.

General Procedure for Reaction of the 8-Alkyl-8,14-cycloberbines (9, 20, and 21) with 10% Hydrochloric Acid— A solution of the cycloberbine (9, 20, or 21; 1.2 mmol) in 10% hydrochloric acid (60 ml) was heated at 70—80 °C for 2 h. After cooling, the reaction mixture was made alkaline with solid potassium carbonate, and then extracted with methylene chloride. The extract was washed with water and brine, dried, and concentrated. Chromatography of the residue on silica gel with ethyl acetate–benzene (1:1) (in the case of 9) or ethyl acetate (in the case of 20 and 21) gave the products. The results and the physical data of the products are summarized in Tables I and III—V.

General Procedure for Reaction of the 8-Alkyl-8,14-cycloberbines (9, 20, and 21) with Trifluoroacetic Acid in Methanol—A solution of the cycloberbine (9, 20, or 21; 0.6 mmol) in methanol (10 ml) was stirred for 3.5 h in the presence of trifluoroacetic acid (2 drops) at room temperature. Methanol was evaporated off and the residue was made alkaline with 10% aq. potassium carbonate, and then extracted with methylene chloride. The extract was washed with water and brine, dried, and concentrated. Chromatography of the residue on alumina with methylene chloride–benzene (2:1) (in the case of 9) or on silica gel with ethyl acetate (in the case of 20 and 21) gave the products. The results and the physical data of the products are summarized in Tables I and III—V.

General Procedure for Reduction of 9 with $NaBH_4$ —NaBH₄ (20 mmol) was added portionwise to a solution of 9 (4 mmol) in methanol (60 ml) and the reaction mixture was stirred for 1 h at room temperature. After evaporation of the methanol, water was added to the residue and the mixture was extracted with methylene chloride. The extract was washed with water and brine, dried, and concentrated. Chromatography of the residue on alumina with ethyl acetate–hexane (3:1) gave the alcohols (20 and 21). The results and the physical data of the products are summarized in Tables II, IV, and V.

General Procedure for Reduction of 9 with LiAlH(OBu')₃—LiAlH(OBu')₃ (10 mmol) was added to a solution of 9 (1 mmol) in dry THF (100 ml) and the reaction mixture was heated under reflux for 1 h, then allowed to cool. Water

	Chemical shift (δ : ppm, J in Hz, CDCl ₃)								
Compd.	H-1	H-4	H-11	H-12	H-13	OCH ₂ O	OMe	Others	
10a	5.94 s	6.58 s	7.07	7.61	_	5.84, 5.80	4.00 s	1.64 s (3H)	
10b	6.04 s	6.58 s	(АВ-q, 7.09	J = 9) 7.59	_	(AB-q, J=2) 5.86, 5.81	3.98 s 3.99 s	1.92 g (2H, $J=7$)	
			(AB-q,	J = 8)		(AB-q, J=2)	3.96 s	0.72 t (3H, J=7)	
10c	6.00 s	6.53 s	7.08	7.60		5.83, 5.80	4.00 s	4.92-4.36 m (2H)	
11.	5 75 -	(50 -	(AB-q,	J=9)		(AB-q, J=2)	3.98 s	1 56 a (2H)	
11a	5.75 8	0.38 \$	(AB-a	I = 9		(AB-a, J=1)	4.02 S 3 90 s	1.50 8 (511)	
			(<i>n</i> D q ,	0-))		$(\mathbf{n}\mathbf{D}\mathbf{q},\mathbf{v}=\mathbf{r})$	3.13 s		
11b	5.85 s	6.58 s	7.12	7.62		5.83, 5.78	4.01 s	1.87 q (2H, $J=7$)	
			(AB-q,	J = 8)		(AB-q, J=2)	3.91 s	0.85 t (3H, $J=7$)	
						5.00 5.70	3.09 s		
lle	5.83 s	6.54 s	7.13	7.64 I_0		5.80, 5.78	4.02 s	6.16 - 5.72 m (1H) 5.04 - 4.55 m (2H)	
			(АБ-Ц,	J=9		(AB-q, J=2)	3.93 8	5.04-4.55 m (211)	
12a	6.12 s	6.60 s	7.05	7.61		5.85, 5.81	3.99 s	6.38 s (1H)	
			(AB-q,	J = 9)		(AB-q, J=2)	3.94 s	5.38 s (1H)	
12b	6.21 s	6.62 s	6.98	7.57		5.86, 5.81	3.98 s	7.04 q (1H, $J=7$)	
			(AB-q,	J = 8)		(AB-q, J=1)	3.90 s	1.63 d (3H, $J=7$)	
12c	6.16 s	6.63 s	7.01	7.57		5.84, 5.80	3.98 s	7.41 d (1H, $J = 10$)	
			(AB-q,	J = 9)		(AB-q, J=2)	3.94 S	5.72 - 0.51 m (1H) 5.43 - 5.12 m (2H)	
20a	6.74 s	6.64 s	6.82	7.09	5.21 br s	5.93 s	3.88 s	1.50 s (3H)	
204	0.7.0	0.010	(AB-q,	J = 8)			3.86 s		
20b	6.78 s	6.65 s	6.87	7.11	5.22 d ^{a)}	5.96, 5.94	3.90 s	1.30 q (2H, J=7)	
			(AB-q,	J = 8)	(J = 12)	(AB-q, J=2)	3.88 s	0.99 t (3H, J=7)	
20c	6.74 s	6.64 s	6.84	7.08	$5.20 d^{a}$	5.94, 5.92	3.89 s	5.97 - 5.67 m (1H)	
219	7.00 s	6 67 s	(AB-q,	J = 8) 7 14	(J = 12) 4 77 s	(AB-q, J=1.3)	3.83 S	$3.32 - 4.80 \text{ III} (2\Pi)$ 1 50 s (3H)	
214	7.00 3	0.07 3	(AB-a.	J=9	4,775	(AB-q, J=2)	3.85 s	1.50 5 (511)	
21b	7.07 s	6.68 s	6.86	7.14	4.74 s	5.94, 5.92	3.94 s	1.25 q (2H, J=9)	
			(AB-q,	J = 8)		(AB-q, J=2)	3.92 s	1.04 t (3H, J=9)	
21c	7.03 s	6.67 s	6.82	7.12	4.68 s	5.91, 5.89	3.87 s	6.14—5.66 m (1H)	
22	5.02	(55 -	(AB-q,	J=9)	150 -	(AB-q, J=2)	3.85 s	5.12—4.87 m (2H)	
22a	5.95 8	0.33 S	0.90 (AB-a	I = 8	4.30 \$	5.80 8	3.90 S	1.34 8 (311)	
22b	6.24 s	6.58 s	6.97	7.21	4.70 s	5.84, 5.83	3.90 s	2.26 g (2H, $J=8$)	
			(AB-q,	J = 8)		(AB-q, J=1)	(6H)	0.77 t (3H, $J=8$)	
22c	6.12 s	6.54 s	6.98	7.24	4.64 s	5.85, 5.82	3.90 s	5.92—5.48 m (1H)	
			(AB-q,	J = 9)		(AB-q, J=2)	(6H)	5.00-4.72 m (2H)	
23a	5.80 s	6.55 s	7.02	7.34	4.59 s	5.80 s	3.92 s	1.35 s (3H)	
			(АВ-q,	J=9			3138		
23b	5.90 s	6.53 s	7.02	7.28	4.50 s	5.83, 5.82	3.92 s	1.63 g (2H, $J=7$)	
			(AB-q,	J = 8)	,	(AB-q, J=2)	3.86 s	0.81 t (1H, J=7)	
							3.13 s		
23c	5.87 s	6.49 s	7.04	7.30	4.47 s	5.80, 5.79	3.92 s	6.00—5.60 m (1H)	
			(AB-q,	J = 9)		(AB-q, J=2)	3.88 s	4.94—4.48 m (2H)	
7 4a	6.06 °	656 .	6 95	7 22	4 98 c	5 87 5 86	3.14 S	648 s (1H)	
27a	0.00 3	0.50 3	(AB-a	J=9	т.70 б	(AB-a, J=1)	3.88 s	5.01 s (1H)	
24b	6.44 s	6.55 s	6.89	7.16	4.67 s	5.88, 5.85	3.88 s	6.86 q (1H, $J=8$)	
			(AB-q,	J = 8)		(AB-q, J=1)	3.84 s	1.57 d (3H, $J=8$)	

TABLE V. ¹H-NMR Spectral Data for Spirobenzylisoquinolines

Commd		Chemical shift (δ : ppm, J in Hz, CDCl ₃)							
Compa.	H-1	H-4	H-11	H-12	H-13	OCH ₂ O	OMe	Others	
24c	6.41 s	6.57 s	6.92	7.18	4.72 s	5.85, 5.84	3.89 s	7.33 d (1H, $J = 12$)	
			(AB-q,	J = 8)		(AB-q, J=1)	(6H)	6.51—6.08 m (1H) 5.39—4.98 m (2H)	
25a	5.74 s	6.58 s	6.96	7.13	5.08 s	5.79, 5.78	3.91 s	1.50 s (3H)	
			(AB-q,	J=9)		(AB-q, J=2)	3.84 s 3.20 s		
25b	5.80 s	6.60 s	6.98	7.08	5.14 s	5.82, 5.79	3.91 s	1.82 q (2H, J=7)	
			(AB-q,	J = 8)		(AB-q, J=2)	3.88 s 3.16 s	0.82 t (3H, J=7)	
25c	5.79 s	6.58 s	6.99	7.14	5.26 br s	5.84, 5.82	3.92 s	6.12-5.82 m (1H)	
			(AB-q,	J = 8)		(AB-q, J=2)	3.90 s 3.22 s	5.04—4.56 m (2H)	
26a	6.16 s	6.59 s	6.93	7.17	4.93 s	5.86, 5.84	3.89 s	6.41 s (1H)	
			(AB-q,	J = 9)		(AB-q, J=2)	3.88 s	5.17 s (1H)	
26b	6.44 s	6.60 s	6.91	7.15	4.91 s	5.86, 5.85	3.89 s	6.85 q (1H, $J=8$)	
			(AB-q,	J=8)		(AB-q, J=1)	3.84 s	1.50 d (3H, J=8)	
26c	6.35 s	6.61 s	6.91	7.16	4.93 s	5.85 s	3.89 s	7.30 d (1H, $J=11$)	
			(AB-q,	J = 9)			(6H)	6.50—6.16 m (1H) 5.36—4.92 m (2H)	

TABLE V. (continued)

a) Changed to s on addition of D_2O .

was added, and the precipitates were filtered off. The filtrate was concentrated to leave the residue, which was taken up in methylene chloride. The methylene chloride solution was washed with water and brine, dried, and concentrated. Chromatography of the residue on alumina with ethyl acetate-hexane (3:1) gave the alcohols (20 and 21). The results and the physical data of the products are summarized in Tables II, IV, and V.

General Procedure for Reaction of the Spirobenzylisoquinolines (10, 23, and 25) with Ethyl Chloroformate—A solution of the spirobenzylisoquinoline (10a, 23, or 25; 0.15 mmol) and ethyl chloroformate (0.75 mmol) in chloroform (5 ml) was refluxed for 5 h (in the case of 10a, 26 h) in the presence of trimethylamine (0.75 mmol). After cooling, the solution was washed with 10% aq. potassium carbonate, water, and brine, dried, and concentrated. Chromatography of the residue on silica gel with ethyl acetate-benzene (1:2 or 1:3) gave the product.

rel-(8*R*,14*R*)-9,10-Dimethoxy-8-methyl-2,3-methylenedioxy-13-oxonorochotensane-7,8-carbolactone¹³ (13): 63%. mp 234—236 °C (EtOH). IR v_{max} cm⁻¹: 1740 (C=O), 1710 (C=O). ¹H-NMR δ : 7.90, 7.00 (2H, AB-q, *J*= 8.5 Hz, H-12 and H-11), 6.67 (1H, s, H-4), 6.06 (1H, s, H-1), 5.92, 5.89 (2H, AB-q, *J*=1 Hz, OCH₂O), 4.02, 4.00 (each 3H, each s, OMe × 2), 1.74 (3H, s, Me). MS *m/z* (%): 409 (M⁺, 31), 365 (100), 350 (84), 320 (57), 306 (15). *Anal.* Calcd for C₂₂H₁₉NO₇: C, 64.54; H, 4.68; N, 3.42. Found: C, 64.75; H, 4.66; N, 3.31.

rel-(8*R*,13*S*,14*S*)-8,9,10-Trimethoxy-8-methyl-2,3-methylenedioxynorochotensane-7,13-carbolactone (**29a**): 78%. mp 151—153 °C (MeOH). IR v_{max} cm⁻¹: 1740 (C=O). ¹H-NMR δ : 7.33, 7.06 (2H, AB-q, J=9 Hz, H-12 and H-11), 6.64 (1H, s, H-4), 5.99 (1H, s, H-1), 5.88 (2H, s, OCH₂O), 5.35 (1H, s, H-13), 3.94, 3.88, 3.16 (each 3H, each s, OMe × 3), 1.40 (3H, s, Me). MS m/z (%): 425 (M⁺, 36), 350 (100), 320 (13). High-resolution mass calcd for C₂₃H₂₃NO₇: 425.1473. Found: 425.1446.

rel-(8*R*,13*S*,14*S*)-8-Ethyl-8,9,10-trimethoxy-2,3-methylenedioxynorochotensane-7,13-carbolactone (**29b**): 79%. mp 145—147 °C (MeOH). IR ν_{max} cm⁻¹: 1730 (C=O). ¹H-NMR δ : 7.31, 6.97 (2H, AB-q, *J*=8 Hz, H-12 and H-11), 6.55 (1H, s, H-4), 5.81, 5.79 (2H, AB-q, *J*=2 Hz, OCH₂O), 5.77, 5.71 (each, 1H, each s, H-1 and H-13), 3.93, 3.87, 3.20 (each 3H, each s, OMe × 3), 1.68 (2H, q, *J*=7 Hz, CH₂CH₃), 0.90 (3H, *J*=7 Hz, CH₂CH₃). MS *m/z* (%): 439 (M⁺, 5.6), 380 (19), 366 (61), 364 (100). *Anal.* Calcd for C₂₄H₂₅NO₇ · 1/2MeOH: C, 64.60; H, 5.98; N, 3.07. Found: C, 64.83; H, 6.12; N, 3.00.

rel-(8*R*,13*S*,14*S*)-8-Allyl-8,9,10-trimethoxy-2,3-methylenedioxynorochotensane-7,13-carbolactone (**29c**): 82%. mp 195—198 °C (MeOH). IR v_{max} cm⁻¹: 1730 (C=O). ¹H-NMR δ : 7.31, 7.10 (2H, AB-q, *J*=8 Hz, H-12 and H-11), 6.55 (1H, s, H-4), 6.01 (1H, s, H-1), 5.89, 5.88 (2H, AB-q, *J*=2 Hz, OCH₂O), 5.80—5.38 (1H, m, ^H)=), 5.25 (1H, s, H-4), 6.01 (1H, s, H-1), 5.89, 5.88 (2H, AB-q, *J*=2 Hz, OCH₂O), 5.80–5.38 (1H, m, ^H)=), 5.25 (1H, s, H-4), 6.01 (1H, s, H-1), 5.89, 5.88 (2H, AB-q, *J*=2 Hz, OCH₂O), 5.80–5.38 (1H, m, ^H)=), 5.25 (1H, s, H-4), 6.01 (1H, s, H-1), 5.89, 5.88 (2H, AB-q, *J*=2 Hz, OCH₂O), 5.80–5.38 (1H, m, ^H)=), 5.25 (1H, s, H-4), 6.01 (1H, s, H-1), 5.89, 5.88 (2H, AB-q, *J*=2 Hz, OCH₂O), 5.80–5.38 (1H, m, ^H)=), 5.25 (1H, s, H-4), 6.55 (1H,

H-13), 5.02–4.70 (2H, m, = $\begin{pmatrix} H \\ H \end{pmatrix}$, 3.95, 3.91, 3.16 (each 3H, each s, OMe × 3). MS m/z (%): 451 (M⁺, 30), 392 (29),

376 (26), 366 (100), 351 (29), 336 (37). Anal. Calcd for C₂₅H₂₅NO₇: C, 66.51; H, 5.58; N, 3.10. Found: C, 66.59; H, 5.56; N, 3.08.

rel-(8*R*, 13*R*, 14*S*)-7-Ethoxycarbonyl-13-hydroxy-8,9,10-trimethoxy-8-methyl-2,3-methylenedioxynorochotensane (**30a**): 61%. mp 169—170 °C (MeOH). IR v_{max} cm⁻¹: 3450 (OH), 1670 (C=O). ¹H-NMR δ : 7.28, 7.06 (2H, AB-q, J=8 Hz, H-12 and H-11), 6.53 (1H, s, H-4), 6.40 (1H, s, H-1), 6.00 (1H, br s, H-13), 5.80 (2H, s, OCH₂O), 5.02 (1H, br s, OH), 4.15 (2H, q, J=7 Hz, CH₂CH₃). 3.90, 3.81, 3.16 (each 3H, each s, OMe × 3), 1.44 (3H, s, Me), 1.30 (3H, t, J=7 Hz, CH₂CH₃). MS m/z (%): 439 (M⁺ – MeOH, 100), 366 (30), 350 (21). *Anal.* Calcd for C₂₆H₂₉NO₈: C, 64.58; H, 6.05; N, 2.90. Found: C, 64.79; H, 6.11; N, 2.99.

rel-(8*R*,13*R*,14*S*)-7-Ethoxycarbonyl-8-ethyl-13-hydroxy-8,9,10-trimethoxy-2,3-methylenedioxynorochotensane (**30b**): 62%. mp 148—149 °C (MeOH). IR v_{max} cm⁻¹: 3450 (OH), 1675 (C=O). ¹H-NMR δ : 7.31, 7.07 (2H, AB-q, *J*= 8 Hz, H-12 and H-11), 6.53 (1H, s, H-4), 6.50 (1H, s, H-1), 5.97 (1H, d, *J*=4 Hz, H-13), 5.79 (2H, s, OCH₂O), 4.97 (1H, d, *J*=4 Hz, OH), 4.14 (2H, q, *J*=7 Hz, OCH₂CH₃), 3.90, 3.82, 3.11 (each 3H, each s, OMe × 3), 1.29 (3H, t, *J*=7 Hz, OCH₂CH₃), 0.31 (3H, t, *J*=7 Hz, CH₂CH₃). MS *m/z* (%): 453 (M⁺ – MeOH, 76), 435 (50), 380 (100), 335 (24), 248 (38). *Anal.* Calcd for C₂₆H₃₁NO₈: C, 64.31; H, 6.44; N, 2.89. Found: C, 64.57; H, 6.20; N, 3.00.

rel-(8*R*,13*R*,14*S*)-8-Allyl-7-ethoxycarbonyl-13-hydroxy-8,9,10-trimethoxy-2,3-methylenedioxynorochotensane (**30c**): 60%. mp 154—155 °C (MeOH). IR v_{max} cm⁻¹: 3450 (OH), 1670 (C=O). ¹H-NMR δ : 7.31, 7.10 (2H, AB-q, *J*=7 Hz, H-12 and H-11), 6.52 (1H, s, H-4), 6.43 (1H, s, H-1), 5.99 (1H, d, *J*=4 Hz, H-13), 5.77 (2H, br s, OCH₂O), 5.52—5.06 (1H, m, H⁻=), 5.00 (1H, d, *J*=4 Hz, OH), 4.50—4.09 (2H, m, = $<_{\rm H}^{\rm H}$), 4.16 (2H, q, *J*=7 Hz, CH₂CH₃),

3.90, 3.83, 3.13 (each 3H, each s, OMe × 3), 1.32 (3H, t, J = 7 Hz, CH₂CH₃). MS m/z: (%): 465 (M⁺ – MeOH, 100), 392 (36), 352 (15), 336 (19), 248 (81). *Anal.* Calcd for C₂₇H₃₁NO₈: C, 65.18; H, 6.28; N, 2.82. Found: C, 65.23; H, 6.24; N, 2.98.

ret-(8*R*,14*R*)-8,7-Epoxymethano-9,10-dimethoxy-8-methyl-2,3-methylenedioxynorochotensan-13-one (14)— Aqueous formaldehyde solution (38%, 3 ml) was added to a solution of 10a (74 mg, 0.2 mmol) in MeOH (10 ml) and the mixture was refluxed for 30 min. The precipitate was collected by filtration and recrystallized from ethyl acetate to give 14 (61 mg, 85%). mp 256—258 °C. IR ν_{max} cm⁻¹: 1710 (C=O). ¹H-NMR δ : 7.64, 7.13 (2H, AB-q, J=8.5 Hz, H-12 and H-11), 6.64 (1H, s, H-4), 5.99 (1H, s, H-1), 5.89, 5.84 (2H, AB-q, J=1.5 Hz, OCH₂O), 4.56, 4.13 (2H, AB-q, J=8 Hz, NCH₂O), 4.00, 3.98 (each 3H, each s, OMe × 2), 1.72 (3H, s, Me). MS m/z (%): 395 (M⁺, 63), 366 (53), 352 (100), 324 (64). Anal. Calcd for C₂₂H₂₁NO₆: C, 66.84; H, 5.32; N, 3.54. Found: C, 66.47; H, 5.18; N, 3.56.

rel-(8*R*,13*S*,14*S*)-8,7-Epoxymethano-13-hydroxy-9,10-dimethoxy-8-methyl-2,3-methylenedioxynorochotensane (31)—Aqueous formaldehyde solution (38%, 3 ml) was added to a solution of 22a (70 mg, 0.2 mmol) in MeOH (10 ml), and the mixture was refluxed for 1 h and concentrated. The residue was made alkaline with sat. aq. potassium carbonate and extracted with methylene chloride. The extract was washed with water, dried, and concentrated. Chromatography of the residue on alumina with ethyl acetate-methylene chloride (1:4) gave 31 (60 mg, 83%). mp 153—155 °C (MeOH) (lit.¹²⁾ 155—157 °C). The product was identical with an authentic sample in IR and NMR spectra and thin-layer chromatographic behavior.

Acknowledgement We are indebted to the Ministry of Education, Science, and Culture of Japan for financial support in the form of a Grant-in-Aid for Scientific Research.

References and Notes

- 1) Part XIII: M. Hanaoka, H. Yamagishi, M. Marutani, and C. Mukai, Chem. Pharm. Bull., 35, 2348 (1987).
- A part of this work was published in a preliminary communication: M. Hanaoka, S. Sakurai, Y. Sato, and C. Mukai, *Heterocycles*, 19, 2263 (1982).
- 3) M. Hanaoka, S. Yasuda, K. Nagami, K. Okajima, and T. Imanishi, *Tetrahedron Lett.*, **1978**, 3749; M. Hanaoka, C. Mukai, K. Nagami, K. Okajima, and S. Yasuda, *Chem. Pharm. Bull.*, **32**, 2230 (1984).
- M. Hanaoka, S. Yasuda, Y. Hirai, K. Nagami, and T. Imanishi, *Heterocycles*, 14, 1455 (1980); M. Hanaoka, K. Nagami, Y. Hirai, S. Sakurai, and S. Yasuda, *Chem. Pharm. Bull.*, 33, 2273 (1985).
- M. Hanaoka, M. Inoue, K. Nagami, Y. Shimada, and S. Yasuda, *Heterocycles*, 19, 313 (1982); M. Hanaoka, S. K. Kim, M. Inoue, K. Nagami, Y. Shimada, and S. Yasuda, *Chem. Pharm. Bull.*, 33, 1434 (1985).
- N. Murugesan, G. Blaskó, R. D. Minard, and M. Shamma, *Tetrahedron Lett.*, 22, 3131 (1981); B. Blaskó, V. Elango, N. Murugesan, and M. Shamma, J. Chem. Soc., Chem. Commun., 1981, 1246.
- M. Hanaoka, M. Inoue, S. Sakurai, Y. Shimada, and S. Yasuda, Chem. Pharm. Bull., 30, 1110 (1982); M. Hanaoka, M. Inoue, N. Kobayashi, and S. Yasuda, *ibid.*, 35, 980 (1987).
- 8) R. H. Preisner and M. Shamma, J. Nat. Prod., 43, 305 (1980).
- 9) S. McLean and D. Dime, Can. J. Chem., 55, 924 (1977); D. Dime and S. McLean, ibid., 57, 1569 (1979).
- M. Hanaoka, A. Asahimori, and S. Yasuda, *Heterocycles*, 22, 2263 (1984); M. Hanaoka, M. Iwasaki, and C. Mukai, *Tetrahedron Lett.*, 26, 917 (1985).
- 11) M. Hanaoka, S. Sakurai, T. Ohshima, S. Yasuda, and C. Mukai, Chem. Pharm. Bull., 30, 3446 (1982).

- 12) M. Hanaoka, M. Kohzu, and S. Yasuda, unpublished data.
- 13) All spirobenzylisoquinolines in this paper were named and numbered according to the spirobenzylisoquinoline alkaloid skeleton, ochotensane.¹⁴⁾
- 14) M. Shamma, "The Isoquinoline Alkaloids: Chemistry and Pharmacology," Academic Press, New York, 1972, p. 381.